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Non-comaximal graph of ideals of a ring
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Abstract. Let R be a ring. The non-comaximal graph of R, denoted by NC(R) is an
undirected graph whose vertex set is the collection of all non-trivial (left) ideals of R and
any two distinct vertices I and J are adjacent if and only if I + J �= R. The concepts of
connectedness, independent set, clique and traversability of NC(R) are discussed.
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1. Introduction

Now-a-days, the study of correspondence between algebraic structure and graph is an
optimal research area. The zero divisor graph of a commutative ring is a milestone of
this trend which was introduced in 1988 by Beck [5]. Some other graphs are introduced,
which make a bridge between algebraic structure and graph. Sharma and Bhatwadekar
[12] introduced the comaximal graph of a commutative ring with unity. Chakrabarty et
al. [6] discussed the intersection graph of ideals of rings. The total graph of commutative
ring was introduced by Anderson and Badawi in [3]. These graphs get more attention for
extension.

For continuation of this sequel, we recollect some basic definitions and notations, which
are already in literature. Throughout this discussion, all graphs are undirected. Let G be an
undirected graph with the vertex set V (G), unless otherwise mentioned. The degree of a
vertex v in a graph G is the number of edges incident with v. A walk in G is an alternating
sequence of vertices and edges, v0x1v1 . . . xnvn in which each edge xi is vi−1vi . A closed
walk has the same first and last vertices. A path is a walk in which all vertices are distinct;
a circuit is a closed walk with all points distinct (except the first and the last). The length of
a circuit is nothing but the number of edges in the circuit. The length of the smallest circuit
of G is called the girth of G, denoted by girth(G). G is connected if there is a path between
every two distinct vertices. A graph which is not connected is called a disconnected graph.
A totally disconnected graph does not contain any edges. For distinct vertices x and y of
G, let d(x, y) be the length of the shortest path from x to y and if there is no such path,
we define d(x, y) = ∞. The diameter of G is the maximum distance among distances
between all pair of vertices of G, denoted by diam(G). If in the graph G any two vertices
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are adjacent, it is called a complete graph. A complete subgraph of G is called a clique.
A maximum clique of G is a clique with largest number of vertices and the number of
vertices of a maximum clique is called the clique number of G. An independent set of G
is a set of vertices of G which are not mutually adjacent. A maximum independent set of
G is an independent set with largest number of vertices and the number of vertices of a
maximum independent set is called the independence number of G, denoted by ω(G). An
Eulerian circuit is a closed walk which contains all the edges of G exactly once. G with
an Eulerian circuit is called an Eulerian graph. A Hamiltonian circuit is a spanning circuit
in G. G is called Hamiltonian if it has a Hamiltonian circuit.

Any undefined terminologies are available in [1,2,4,7–11,13].

For a ring R, the non-comaximal graph is a graph whose vertex set is the collection of
all non-trivial (left) ideals and any two vertices I, J are adjacent if and only if I + J �= R.
We denote the non-comximal graph of R by NC(R) and follow this notation for the
continuation of this article. In the next section, we discuss the concept of connectedness
of NC(R) of R. In that context, we find the diameter and girth of NC(R). The insights of
coloring and traversability are interpreted in section 3. We establish some results related
with independence number and cliques. Finally, we conclude the section with some results
of traversability and independent set. Most of the results are established in the ring Zn , the
ring of integer modulo n. From here onwards, unless otherwise specified, R is a ring with
unity.

2. Connectedness of NC(R)

This section contains some results of connectedness of NC(R) and NC(Zn).

Theorem 2.1. NC(R) is complete if and only if ideals of R form a chain.

Proof. If the ideals of R form a chain, then it is easy to check that any two vertices of
NC(R) are adjacent. For the converse part, we consider NC(R) is a complete graph. On
the contrary, assume that there exists two ideals I and J of R such that either one of them
is not contained in the other. Now consider a maximal ideal M which contains I and this
yields that J and M are not adjacent. Hence the theorem. �

Theorem 2.2. NC(Zn) is disconnected if and only if n = p1 p2, where p1 and p2 are
distinct primes.

Proof. If n = p1 p2, then (p1) + (p2) = Zn and so NC(Zn) is disconnected. For the
opposite direction, assume the prime factorization of n = pk1

1 pk2
2 . . . pkrr . If r > 2, then

the vertices (p1) and (p1 p2) are adjacent. Again if ki ≥ 2 for any i = 1, 2, . . . , r , then
the vertices (pi ) and (p2

i ) are adjacent. Hence NC(Zn) is disconnected if and only if
n = p1 p2. �

In fact, NC(Zn) is totally disconnected if and only if n = p1 p2, where p1 and p2 are dis-
tinct primes. From this, we see that NC(Zn) is not bicolorable if and only if n = p1 p2. The
next theorem establishes the necessary and sufficient condition of totally disconnectedness
for an arbitrary ring with unity.
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Theorem 2.3. NC(R) is totally disconnected if and only if every non-trivial ideal of R is
maximal as well as minimal.

Proof. Let every non-trivial ideal of R be maximal as well as minimal. Consider two
distinct non-trivial ideals I and J . Then I + J = R, and as I and J are arbitrary, there
is no edge between any pair of distinct ideals. Thus NC(R) is totally disconnected. For
the other direction, suppose that I and J are two non-trivial ideals of R. Then totally
disconnectedness of NC(R) gives that I + J = R. If I ∩ J �= 0, then I − I ∩ J − J is a
path. This contradiction asserts that I ∩ J = 0. If both I and J are not maximal, then we
have two maximal ideals M1 and M2 with I ⊆ M1 and J ⊆ M2, respectively. If M1 = M2,
then we obtain a path I −M1 − J and so M1 and M2 are distinct. Without loss of generality,
we assume that I is not maximal. Let x ∈ M1 and x /∈ I . Since M1 + M2 = R, there exist
i ∈ I and j ( �= 0) ∈ J with x = i + j . This gives that M1 ∩ M2 �= 0 as j ∈ M1 ∩ M2.
This concludes that I − M1 ∩ M2 − J is a path, a contradiction. Hence the theorem. �

Next, we find the girth of NC(Zn). Then we generalize the result for NC(R).

Theorem 2.4. If NC(Zn) contains a circuit, then girth(NC(Zn)) = 3.

Proof. Observe that n is not equal to p2, p3 or p1 p2. If n = pr , r > 3, then NC(Zn) is a
complete graph. In general, if n = pk1

1 pk2
2 · · · pkrr is the prime factorization of n, then the

vertices (pi ), (p2
i ) and (pi p j ) form a circuit whenever ki > 1, i = 1, 2, . . . , r . Hence the

result. �

Theorem 2.5. If NC(R) contains a circuit, then girth(NC(R)) = 3.

Proof. Notice that it is not the case here that every non-trivial ideal of R is maximal as well
as minimal. If I + J �= R for ideals I and J , then we obtain a circuit I − J − I + J − I .
Again, if I + J = R, then there are maximal ideals M1, M2 with I ⊆ M1 and J ⊆ M2,
respectively. Like the proof of previous theorem, we can get the circuit I−M1−M1∩M2−I .
Hence girth(NC(R)) = 3. �

Theorem 2.6. For Zn , diam(NC(Zn)) = 1, 2 or ∞.

Proof. If n = p1 p2, then diam(NC(Zn)) = ∞. Again, if n = pr , r > 2, then
diam(NC(Zn)) = 1. In general, consider the case when the prime factorization of n
is pk1

1 pk2
2 . . . pkrr . If (l) and (m) are two vertices such that l and m have no common prime

divisor, then (l) and (m) are not adjacent. In this case, we can find a prime divisor of m
and multiple of that prime divisor with l gives a vertex (q), where q is the multiple of l
with that prime divisor. Thus, we get a path (l) − (q) − (m) and so diam(NC(Zn)) = 2.
This completes the proof. �

Remark 2.7. Recollect that R is local means R contains exactly one maximal ideal.

Theorem 2.8. For R, diam(NC(R)) = 1, 2 or ∞.



   76 Page 4 of 8 Proc. Indian Acad. Sci. (Math. Sci.)          (2019) 129:76 

Proof. If every non-trivial of R is maximal as well as minimal, then diam(NC(R)) = ∞.
Again, if R is a local ring, then diam(NC(R)) = 1. Lastly, if every non-trivial ideal of R
is not maximal as well as minimal, then for vertices I and J , we have maximal ideals M1
and M2 with I ⊆ M1 and J ⊆ M2, respectively. As earlier in Theorem 2.3, we can show
that I − M1 ∩ M2 − J is a path. Thus diam(NC(R)) = 2. Hence the theorem. �

3. Independence set, clique and traversability of NC(R)

In this section, we discuss the concepts of independence set, clique and traversability of
NC(R). We look at these insights in NC(Zn) also. It is necessary to mention here that in
the ring Zn , n = pk1

1 pk2
2 . . . pkrr is the prime factorization n for the following sequel.

Remark 3.1. First, we find the independence number of NC(Zn). Notice that an indepen-
dent set contains those ideals which are generated by powers of distinct primes. Take the
independent set I = {(p j1

1 ), (p j2
2 ), . . . , (p jr

r )}, where 1 ≤ jl ≤ kl , l = 1, 2, . . . , r . No two
vertices of I are adjacent. Therefore, I is a maximum independent set. Thus independence
number of NC(Zn) is r . �

Theorem 3.2. The number of maximum independent set of NC(Zn) is k1k2 . . . kr .

Proof. Let n = pk1
1 pk2

2 . . . pkrr be the prime factorization of n. By Remark 3.1, the maxi-
mum independent set contains r members and all these members are generated by powers
of distinct primes. There are k1k2 . . . kr number of sets. Hence the number of maximum
independent sets is k1k2 . . . kr . �

Theorem 3.3. The independence number of NC(R) is |max(R)|, where max(R) is the set
of all maximal ideals in R.

Proof. First, note that if an ideal I belongs to an independent set, then the ideal, which is
contained in the corresponding maximal ideal of I is not a member of that independent
set. It is just a routine work to see that no two members of max(R) are adjacent. If we
want to add ideal I in max(R), then there must exist a maximal ideal M for I and so I and
M are adjacent. This violates the independence character of max(R). Thus max(R) is a
maximum independent set. Therefore, the independence number of NC(R) is |max(R)|.
Hence the theorem. �

Theorem 3.4. The clique number of NC(Zn) is kt (k1 + 1)(k2 + 1) . . . (kt−1 + 1)(kt+1 +
1) . . . (kr + 1) − 1, where kt is the maximum value of ki , i = 1, 2, . . . , r .

Proof. The vertex set of NC(Zn) has T1 = (k1 + 1)(k2 + 1) . . . (kr + 1) − 2 elements.
Consider the element (p ji

i ), where 1 ≤ ji ≤ ki , 1 ≤ i ≤ r . Then (p ji
i ) is adjacent

to all vertices which are multiples of pi . There are T2 = (k1 + 1)(k2 + 1) . . . (ki−1 +
1)(ki+1 + 1) . . . (kr + 1) − 1 vertices which are not multiples of pi . If C is the set of
vertices which are generated by multiples of pi , then number elements in C is T1 − T2 =
ki (k1 + 1)(k2 + 1) . . . (ki−1 + 1)(ki+1 + 1) . . . (kr + 1) − 1. The number of elements in C
will be maximum for the maximum value of ki , i = 1, 2, . . . , r . Thus the clique number
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NC(Zn) is kt (k1 + 1)(k2 + 1) . . . (kt−1 + 1)(kt+1 + 1) . . . (kr + 1) − 1, where kt is the
maximum value of ki , i = 1, 2, . . . , r . The proof is complete. �

Remark 3.5. Now we see the process of counting the total number of cliques of NC(Zn),
where n = pk1

1 pk2
2 . . . pkrr is the prime factorization. First, we determine the number of

ideals which are generated by multiple of p1. There are k1 number of ideals of the form
(p j1

1 ), where 0 < j1 < k1. There are k1(k2 + k3 + · · · + kr ) ideals of the form (p j1
1 p jm

m ),
where 0 ≤ j1 ≤ k1 and 1 ≤ jm ≤ km,m = 2, 3, . . . , r . Following this way, we obtain the
number of ideals generated by multiples of p1 is T1 = k1(k2 + k3 + · · ·+ kr )+ k1k2(k3 +
k4 + · · · + kr ) + k1k3(k4 + k5 + · · · + kr ) + · · · + k1kr−1kr + k1k2k − 3 . . . kr − 1.

Thus cliques with 2, 3, . . . , T1 members from T1 is given by

(
T1
2

)
,

(
T1
3

)
, . . . ,

(
T1
T1

)
,

respectively. In the same way, the number of ideals generated by p2, but not by p1 is given
by T2 = k2 + k2k3(k4 + k5 + · · · + kr ) + · · · + k2k3k4 · · · kr . The cliques from this T2

elements with 2, 3, . . . , T2 elements are given by

(
T2
2

)
,

(
T2
3

)
, . . . ,

(
T2
T2

)
, respectively.

Proceeding these steps r times, we can count the total number of cliques in NC(Zn). �

In the next theorem, we obtain the clique number in NC(R).

Theorem 3.6. The clique number of NC(R) is the cardinality of the set containing all the
ideals, except zero, which are contained in the maximal ideal M , where M will contain
the maximum number of ideals among all maximal ideals of R.

Proof. Let M be the set of all ideals which are contained in M , where M is the maximal
ideal containing maximum number of ideals among all maximal ideals of R. Then any two
members of M are adjacent. If we add any other ideal in M, then M is no longer a set of
mutually adjacent vertices. This asserts that M is a maximum independent set. Hence the
clique number of NC(R) is the cardinality of M. This completes the proof. �

Next, we establish some results related with the concepts of traversability.

Theorem 3.7. NC(Zn) is Eulerian, if each ki is even; i = 1, 2, . . . , r .

Proof. The vertex set of NC(Zn) contains T1 = (k1 +1)(k2 +1) · · · (kr +1)−2 elements.
Let each ki be even, i = 1, 2, . . . , r . Then the vertex set of NC(Zn) contains T1 =
(k1 + 1)(k2 + 1) · · · (kr + 1)− 2 elements which is an odd number. Now consider a vertex
I = (p j1

1 p j2
2 . . . pktt ), where t ≥ 1, 0 ≤ ji ≤ ki . Thus I is adjacent to all vertices which

are generated by multiples of pi , where i = 1, 2, . . . , t . Therefore, there are even number
of T2 = (kt + 1)(kt + 2) · · · (kr + 1)− 1 vertices which are not adjacent to I . Considering
this, we conclude that I is an even degree vertices of degree T1 − T2 − 1. Hence NC(Zn)

is an Eulerian graph. The proof is complete. �

Remark 3.8. Observe that the converse of the above theorem is not true. This can be
obtained by looking in the Eulerian graph NC(Zn) for n = pqr .

Theorem 3.9. If R is finite and every maximal ideal of R contains even number of non-
trivial ideals, then NC(R) is Eulerian.
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Proof. Let M be a maximal ideal of R. If M be the collection of non-trivial ideals which
are contained in M , then |M| is an even number. Then any two members inM are adjacent.
So each member in M is of degree |M|. Hence NC(R) is Eulerian. �

Theorem 3.10. NC(Zn) is Hamiltonian if and only if n �= p2, p3, p1 p2, p2
1 p2 or p1 p2

2 .

Proof. One part is evident. For the converse part, take n = pk1
1 pk2

2 . . . pkrr . If we consider
the collection of vertices which are generated by multiples of p1 except (p1 p2) and (p1 pr ),
then we can get a circuit C1 which contains all the vertices of the collection. Now leaving
the vertices ofC1, if we consider the collection of vertices which are generated by multiples
of p2, except (p2 p3), we obtain a circuitC2 which contains all the vertices of the collection.
Following this method, we find a circuit Cr , where the vertices in Cr are multiples of pr
but not multiples of any of p1, p2, . . . , pr−1. Then (p1) −C1 − (p1 p2) −C2 − (p2 p3) −
· · · − Cr − (p1 pr ) − (p1) is a Hamiltonian circuit in NC(Zn). Hence the theorem. �

In the last part of this section, we establish some results related with independence
number of NC(R), where R is a commutative ring with unity.

Theorem 3.11. If R has infinite number of idempotents, then NC(R) contains an infinite
independent set.

Proof. Let x be a non-trivial idempotent of R. Then R = Rx × R(1− x) can be written as
the direct product of the rings Rx and R(1 − x). Using the given condition, we either have
Rx or R(1 − x) containing infinitely many idempotents. Thus there exists a non-trivial
idempotent y1 with Ry1 containing infinitely many idempotents. Since y1 is a non-zero
idempotent, we can consider Ry1 as a ring with unity y1. In the same way, we get a non-zero
idempotent y2( �= y1) with Ry2 containing infinitely many idempotents. Proceeding in this
direction, we have an infinite sequence y1, y2, . . . , yn, . . . of non-trivial idempotents such
that Ryi+1 � Ryi for every i = 1, 2, . . .. Take y0 = 1 and xi+1 = yi+1 +1− yi for i ≥ 0.
Then for every positive integer n, xn is a non-trivial idempotent such that yn = ∏n

j=1 x j
and Ryn + Rxn+1 = R. Hence {Rxn : n ≥ 1} is an independent set of NC(R). �

Theorem 3.12. If NC(R) does not contain any infinite independent set, then R is a finite
ring.

Proof. We assume that R is a reduced ring with the Jacobson radical J (R) of R is zero. We
can consider this assumption because of the following observation. Since NC(R) does not
contain any infinite independent set, the set of units G of R is a finite multiplicative group.
Thus J (R) is a finite ideal, as the map x → 1 + x is an injective mapping of J (R) into G.
Again, by assumption, R/J (R) does not contain any infinite independent set. So, to prove
the theorem, we replace R by R/J (R). Since the ideals generated by prime numbers of Z
form an infinite independent set, therefore, Z cannot be a prime subring of R. Thus R has
positive characteristics. This helps to express R as a product R = R1 × R2 × · · · × Rs ,
where characteristics of each Ri is a prime number for i = 1, 2, . . . , s. Immediately,
we can assume that characteristics of R is a prime number p, say. This will provide that
Z/(p) is a subring of R. Since the collection of all ideals generated by monic irreducible
polynomials is an infinite independent set of the polynomial ring Z/(p)[x], every element



Proc. Indian Acad. Sci. (Math. Sci.)          (2019) 129:76 Page 7 of 8    76 

of R is algebraic over Z/(p). In this case, the Krull dimension of R is zero. But then,
every principal ideal of R is an idempotent ideal as R is reduced. By Theorem 3.11, R has
finitely many idempotents. From this, it is obtainable that R is a direct product of a finite
number of indecomposable zero-dimensional reduced ring, i.e. fields. Clearly, R is a finite
direct product of finite fields, as G is a finite group. Therefore, R is a finite ring. Hence
the theorem. �

Theorem 3.13. The ring R is finite if and only if ω(NC(R)) is finite and ω(NC(R)) =
t + l, where t is the number of maximal ideals of R and l denotes the number of units of R.

Proof. Clearly, if R is finite then ω(NC(R)) is finite. In the other direction, if ω(NC(R))

is finite, then every independent set of NC(R) is finite. Hence, by the above theorem, R
is a finite ring.

To establish the second part, we consider G = {u1, u2, . . . , ul} as the collection of all
units of R and {M1, M2, . . . , Mt } is the collection of all maximal ideals of R. Now using
the Chinese Remainder theorem, R contains an element ai ∈ Mi with ai − 1 ∈ Mj ,∀i �=
j, i = 1, 2, . . . , t . But this gives that S = {(u1), (u2), . . . , (ul), (a1), (a2), . . . , (at )} is an
independent set of NC(R) and thus ω(NC(R)) ≥ l+ t . If we can show that ω(NC(R)) ≤
l + t , then this will prove the required result. For this, we define T1 = M1 and Tk =
Mk − ⋃k−1

i=1 Mi , 2 ≤ k ≤ t . Evidently, G ∪ T1 ∪ T2 ∪ · · · ∪ Tt is a partition of R. Now
consider the map f : R −→ {1, 2, . . . , t + l}, defined by f (ui ) = i for 1 ≤ i ≤ l and
f (Tj ) = l + j for 1 ≤ j ≤ t . It is clear that if x and y are two distinct elements of R
with (x) + (y) = R, then f (x) and f (y) are distinct. Thus we have {(xi ) : xi ∈ R} is
a maximum independent set of NC(R) and so ω(NC(R)) ≤ l + t . This completes the
proof. �

COROLLARY 3.14

If R is a finite local ring having residue field consisting of pn elements, then p is a prime.
Then ω(NC(R)) = pnm − pn(m−1) + 1, where m is the length of R.

Example 3.15. Let R = Z/(2) × · · · × Z/(2). It is easy to check that R has evidently
n−1 maximal ideals and unity is the only unit element of R. Therefore, by Theorem 3.13,
we conclude that ω(NC(R)) = n.
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