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Abstract
In this article, we work on the existence of solution of generalized fractional integral equations of two variables. To achieve 
our main objective, we establish a new fixed point theorem using measure of noncompactness and a new contraction operator 
which generalized the Darbo’s fixed point theorem (DFPT). Also we obtain the corresponding coupled fixed point theorem. 
Finally we apply this generalized DFPT on the generalized fractional integral equations of two variables and illustrate our 
findings with the help of an example.
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Introduction

Fractional calculus is the study of the derivatives as well as 
integrals of arbitrary order using Gamma function. A frac-
tional derivative in applied mathematics and mathematical 
analysis is a derivative of any noninteger order, real or com-
plex. The first existence is in a letter written by G.W. Leibniz 
in sixteenth century ending to Antoine de l’Hopital [20]. In 
one of N. H. Abel’s early papers [1], fractional calculus was 
adopted, where those elements can be considered: the defi-
nition of integration and differentiation of fractional order, 
the strictly inverse connection among them, the perception 
that differentiation and integration of fractional order can 
be perceived as being in the same generalized operation, 
and indeed the coherent form for ambiguous real order dif-
ferentiation and integration. Over the nineteenth and early 
twentieth centuries, the theory and applications of fractional 
calculus developed greatly, and countless contributors have 
provided interpretations for fractional derivatives and inte-
grals. The Erdélyi–Kober fractional integrals are used in 
many branches of mathematics like porous media, viscoe-
lasticity and electrochemistry, etc. (see [9, 18]). Fixed point 
theory and measure of noncompactness have many applica-
tions in solving different types of integral equations which 
overcome the different real-life situations see for instance 
[4, 5, 12, 24, 25, 27–30]. Due to the importance of integral 
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equations of fractional order, it has become essential to study 
such type of equations.

Darbo’s fixed point theorem and its generalizations which 
use the concept of MNC have been applied by many authors 
[2, 5, 11, 15, 16, 21–24] to study integral as well as differen-
tial equations. With the help of different type contraction of 
operators, Darbo’s fixed point theorem has been generalized 
by different researchers in the recent past, see [11, 15, 23, 26]. 
Işik et. al. [19] have extended Darbo’s fixed point theorem via 
weak JS-contractions in a Banach spaces, also derived couple 
fixed point theorem and applied it to study the existence of 
solutions for a system of integral equations. So motivated by 
these works, we have generalized the DFPT using a new con-
traction operator which is defined with the help of a function 
used in [17] and apply it on a generalized fractional integral 
equation of two variables to check the solvability.

Preliminaries

Let (�, ∥ . ∥) be a real Banach space. Suppose that 
B(�, r) = {x ∈ � ∶∥ x − � ∥≤ r}. If � be a nonempty subset 
of � , then by �̄ and Conv� we denote the closure and con-
vex closure of �, and let �� be the family of all nonempty 
and bounded subsets of � and �� be its subfamily consisting 
of all relatively compact sets.

Definition 2.1 [6] A function � ∶ �� → [0,∞) is said to 
be a MNC in � if 

 (i) for all � ∈ ��, we have �(�) = 0 which gives � is 
relatively compact.

 (ii) ker � =
{
� ∈ �� ∶ �(�) = 0

} ≠ � and ker 𝜗 ⊂ ��.

 (iii) � ⊆ �1 ⟹ 𝜗(�) ≤ 𝜗
(
�1

)
.

 (iv) 𝜗
(
�̄
)
= 𝜗(�).

 (v) �(Conv�) = �(�).

 (vi) �
(
�� + (1 − �)�1

) ≤ ��(�) + (1 − �)�
(
�1

)
 f o r 

� ∈ [0, 1].

 (vii) if �j ∈ ��, �j = �̄j, �j+1 ⊂ �j for j = 1, 2, 3,… 
and limj→∞ �

(
�j

)
= 0 then 

⋂∞

j=1
�j ≠ �.

The family ker� is said to be the kernel of measure �. The 
set �∞ =

⋂∞

j=1
�j ∈ ker�. Since �(�∞) ≤ �(�j) for any j,  

we infer that �(�∞) = 0.

Theorem 2.2 [3, Schauder] Let � be a nonempty bounded 
closed and convex subset of a Banach space �̄. Then every 
compact continuous map � ∶ � → � admits at least one 
fixed point.

The following theorem is the generalization of the above 
theorem (Schauder fixed point theorem (SFPT)) which is 
known as Darbo’s fixed point theorem (DFPT).

Theorem 2.3 [14, Darbo] Let � be a nonempty, bounded, 
closed and convex subset of a Banach space �̄. Let 
� ∶ � → � be a continuous mapping and there is a con-
stant � ∈ [0, 1) such that

Then � possesses a fixed point.

To establish the extension of DFPT, we recall following 
related concepts

Definition 2.4 [17] Let F  be the collection of all functions 
Δ ∶ ℝ+ ×ℝ+ → ℝ+ such that 

(1) max {�,�} ≤ Δ(�,�) for �,� ≥ 0.

(2) Δ is continuous and nondecreasing.
(3) Δ(� +�, �1,�1) ≤ Δ(�, �1) + Δ(�,�1).

For example, Δ(�,�) = � +�.

Definition 2.5 [26] Let Γ denote the set of all functions 
� ∶ ℝ+ → [1,∞) such that 

(1) � is a continuous and strictly increasing function.
(2) for each sequence 

{
𝜅j

}
⊆ (0,∞), limj→∞ 𝛾

(
𝜅j

)
= 1 if 

and only if limj→∞ �j = 0.

For example, �(�) = e� belongs to Γ.

Definition 2.6 Let Ξ be the set of all functions 
� ∶ [1,∞) → ℝ+ satisfying 

(1) � is continuous.
(2) �(1) = 0.

(3) for each sequence 
{
𝜅j

}
⊆ (1,∞), limj→∞ 𝜉

(
𝜅j

)
= 0 if 

and only if limj→∞ �j = 1.

For example 

(1) �1(l) = l − l
1

n , n ≥ 1 belongs to Ξ,

(2) �2(l) = el−1 − 1 belongs to Ξ,

(3) �3(l) = ln(l) belongs to Ξ.

Definition 2.7 [8] A mapping S ∶ [0,∞) → L(X) is said to 
be a strongly continuous semigroup on X if the following 
conditions hold: 

 (i) S(0) = I, S(t + s) = S(t)S(s) for all t, s ≥ 0

 (ii) for all x ∈ X, S(.)x is continuous on [0,∞), where X 
denotes a complex Banach space and L(X) denotes 
the Banach algebra of all linear continuous map-
pings.

𝜗(��) ≤ 𝜅𝜗(�), � ⊆ �.
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Main result

Theorem 3.1 Let � be a nonempty bounded, closed and con-
vex subset of a Banach space �. Also, let � ∶ � → � be a 
continuous mapping such that

for all A ⊆ �, 𝛾 ∈ Γ, 𝜉 ∈ Ξ, Δ ∈ F  where � ∶ ℝ+ → ℝ+ 
is a continuous mapping, and � is an arbitrary MNC. Then 
� possesses at least one fixed point in �.

P r o o f  L e t  (�j)  w i t h  �0 = �  a n d 
�j+1 = Conv(��j)  f o r  a l l  n ≥ 0.  A l s o , 
��0 = �� ⊆ � = �0, �1 = Conv(��0) ⊆ � = �0. 
C o n t i n u i n g  i n  t h e  s i m i l a r  m a n n e r  g i ve s 
�0 ⊇ �1 ⊇ �2 ⊇ … ⊇ �j ⊇ �j+1 ⊇ … . If there exists k ∈ ℕ 
satisfying �(�k) = 0 , then �k is a compact set. By SFPT, � 
has a fixed point.

Let 𝜗(�j) > 0 for some j ∈ ℕ. Clearly, the sequence {
�(�j)

}
 is a nonnegative, decreasing and bounded 

below sequence. So, the sequence is convergent and let 
limj→∞ �(�j) = b ≥ 0.

Also, �(�j+1) = �(Conv
(
���

)
) = �(���) and by (3.1) 

we have

If it is possible, assume that b > 0. As j → ∞, we have

i.e., �{�[Δ(b, �(b))]} ≤ 0.

H e n c e ,  �{�[Δ(b, �(b))]} = 0  w h i c h  g i v e s 
�[Δ(b, �(b))] = 1. Consequently, Δ(b, �(b)) = 0 which gives 
limj→∞ �(�j) = b = 0. Since �j ⊇ �j+1, by Definition 2.1, 
we get �∞ =

⋂∞

j=1
�j is a nonempty, closed and convex sub-

set of � and �∞ is � invariant. Thus, Theorem 2.2 implies 
that � admits a fixed point in �∞ ⊆ �.   ◻

Remark 3.2 We have generalized Darbo’s fixed point theo-
rem by using a new contraction operator which involves 
MNC to study operators whose properties can be character-
ized as being intermediate between those of contraction and 
compact mapping. The main advantage of this generalization 
using MNC is that the compactness of domain of the opera-
tor which is essential in Shauder’s theorem has been relaxed.

(3.1)

�
[
Δ(�(�A), �(�(�A)))

] ≤�[Δ(�(A), �(�(A)))]

− �{�[Δ(�(A), �(�(A)))]}

�
[
Δ
(
�
(
�j+1

)
, �
(
�
(
�j+1

)))]

= �
[
Δ
(
�
(
���

)
, �
(
�
(
���

)))]

≤ �
[
Δ
(
�
(
��

)
, �
(
�
(
��

)))]
− �

{
�
[
Δ
(
�
(
��

)
, �
(
�
(
��

)))]}
.

�[Δ(b, �(b))] ≤ �[Δ(b, �(b))] − �{�[Δ(b, �(b))]},

Theorem 3.3 Let � be a nonempty bounded closed and con-
vex subset of a Banach space �. Also, let � ∶ � → � be a 
continuous map such that

for all A ⊆ �, 𝛾 ∈ Γ, 𝜉 ∈ Ξ, where � ∶ ℝ+ → ℝ+ is a con-
tinuous map and � is an arbitrary MNC. Then � admits at 
least one fixed point in �.

Proof The result follows by taking Δ(p, q) = p + q in Theo-
rem 3.1.   ◻

Theorem 3.4 Let � be a nonempty bounded closed and con-
vex subset of a Banach space �. Also, let � ∶ � → � be a 
continuous map such that

for all A ⊆ �, 𝛾 ∈ Γ, 𝜉 ∈ Ξ where � is an arbitrary MNC. 
Then � possesses at least one fixed point in �.

Proof By taking � ≡ 0 in Theorem  3.3, we obtain the 
required result.   ◻

Theorem 3.5 Let � be a nonempty bounded closed and con-
vex subset of a Banach space �. Also, let � ∶ � → � be a 
continuous map such that

for all A ⊆ �, 𝜆 ∈ [0, 1), where � is an arbitrary MNC. 
Then � admits at least one fixed point in �.

P ro o f  B y  t a k i n g  �(t) = et, �(t) = t − t�  fo r  a l l 
t ≥ 0, � ∈ [0, 1) in Theorem 3.4, we obtain the result.  
 ◻

Remark 3.6 It can be observed that Theorem 3.5 is DFPT, 
so it reflects that Theorem  3.1 is a generalization of 
Theorem 3.5.

Definition 3.7 [10] The ordered pair (p, q) ∈ � ×� is said 
to be a coupled fixed point of a mapping � ∶ � ×� → � if 
�(p, q) = p and �(q, p) = q.

Theorem 3.8 [6] Suppose that �1, �2,… , �n be an MNC in 
�1,�2,… ,�n, respectively. Moreover, let � ∶ ℝ

n
+
→ ℝ+ 

be a convex function such that �
(
p1, p2,… , pn

)
= 0 

i f  and only  i f  pl = 0  for  l = 1, 2,… , n .  Then, 
�(�) = �

(
�1(�1), �2(�2),… , �n(�n)

)
 defines an MNC in 

�
[
�(�A) + �(�(�A))

] ≤�[�(A) + �(�(A))]

− �{�[�(A) + �(�(A))]}

�
[
�(�A)

] ≤ �[�(A)] − �{�[�(A)]}

�(�A) ≤ ��(A)
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�1 ×�2 ×… ×�n, where �l is the natural projection of � 
into �l for l = 1, 2,… , n.

Example 3.9 [6] Let � be an MNC on �. Define 
�(p, q) = p + q, p, q ∈ ℝ+. Then � satisfies the properties 
in Theorem 3.8. Hence, �cf (�) = �(�1) + �(�2) is a MNC 
in � ×�, where �l, l = 1, 2 denotes the natural projection 
of �.

Theorem 3.10 Let � be a nonempty bounded closed and 
convex subset of a Banach space �. Also, assume that 
� ∶ � ×� → � be a continuous map such that

for all A1, A2 ⊆ �, where � is an arbitrary MNC 
and �, �, �  and Δ are as in Theorem 3.1. Also, 
l e t  �(p1 + q1) ≤ �(p1) + �(q1), p1, q1 ≥ 0  a n d 
�(p1 + q1) ≤ �(p1) + �(q1), p1, q1 ≥ 0. Then � admits at 
least a coupled fixed point in �.

Proof Consider the mapping �cf ∶ � ×� → � ×� 
by �cf (p, q) = (�(p, q),�(q, p)). It is trivial that �cf  
is continuous. Let A ⊆ � ×� be nonempty and we 
have �cf (A) = �

(
A1

)
+ �

(
A2

)
 is an NMC, where A1, A2 

are the natural projections of A into �. We obtain

By Theorem 3.1, we have �cf  has at least one fixed point in 
� ×� , i.e., � possesses at least one coupled fixed point.  
 ◻

Corollary 3.11 Let � be a nonempty bounded closed and con-
vex subset of a Banach space �. Also, let � ∶ � ×� → � 
is a continuous mapping such that

�
[
Δ
(
�
(
�

(
A

1

× A
2

))
, �
(
�
(
�

(
A

1

× A
2

))))]

≤ 1

2

{
�
[
Δ
(
�
(
A

1

)
+ �

(
A

2

)
, �
(
�
(
A

1

)
+ �

(
A

2

)))]

−�
{
�
[
Δ
(
�
(
A

1

)
+ �

(
A

2

)
, �
(
�
(
A

1

)
+ �

(
A

2

)))]}}

�
[
Δ
(
�cf (�(A)), �

(
�cf (�(A))

))]

≤ �
[
Δ
(
�cf

(
�

(
A1 × A2

)
×�

(
A2 × A1

))
, �
(
�cf

(
�

(
A1 × A2

)
×�

(
A2 × A1

))))]

= �
[
Δ
(
�
(
�

(
A1 × A2

))
+ �

(
�

(
A2 × A1

))
, �
(
�
(
�

(
A1 × A2

))
+ �

(
�

(
A2 × A1

))))]

≤ �
[
Δ
(
�
(
�

(
A1 × A2

))
+ �

(
�

(
A2 × A1

))
, �
(
�
(
�

(
A1 × A2

)))
+ �

(
�
(
�

(
A2 × A1

))))]

≤ �
[
Δ
(
�
(
�

(
A1 × A2

))
, �
(
�
(
�

(
A1 × A2

))))
+ Δ

(
�
(
�

(
A2 × A1

))
, �
(
�
(
�

(
A2 × A1

))))]

≤ �
[
Δ
(
�
(
�

(
A1 × A2

))
, �
(
�
(
�

(
A1 × A2

))))]
+ �

[
Δ
(
�
(
�

(
A2 × A1

))
, �
(
�
(
�

(
A2 × A1

))))]

≤ {
�
[
Δ
(
�
(
A1

)
+ �

(
A2

)
, �
(
�
(
A1

)
+ �

(
A2

)))]
− �

{
�
[
Δ
(
�
(
A1

)
+ �

(
A2

)
, �
(
�
(
A1

)
+ �

(
A2

)))]}}

=
{
�
[
Δ
(
�cf (A), �

(
�cf (A)

))]
− �

{
�
[
Δ
(
�cf (A), �

(
�cf (A)

))]}}
.

for all A1, A2 ⊆ �, where � is an arbitrary MNC 
and �, �  and Δ are as in Theorem 3.1.  Also, 
l e t  �(p1 + q1) ≤ �(p1) + �(q1), p1, q1 ≥ 0  a n d 
�(p1 + q1) ≤ �(p1) + �(q1), p1, q1 ≥ 0. Then � has at least 
a coupled fixed point in �.

Proof The resul t  can be obtained by taking 
�(t) = t − t�, � ∈ [0, 1) in Theorem 3.10.   ◻

Application

The fractional integral of a function f ∈ L1(a, b) by another 
function g of order � is [31],

which is defined for every continuous function f(t) and for 
any monotone function g(t) having a continuous derivative.

Analogous to the above operator 4.1, the fractional 
integral for a continuous function h(t, s) of two variables 
on [a, b] × [a, b], by monotone functions g h of order � is 
defined by

�
[
Δ
(
�
(
�

(
A1 × A2

))
, �
(
�
(
�

(
A1 × A2

))))]

≤ 1

2

{
�
[
Δ
(
�
(
A1

)
+ �

(
A2

)
, �
(
�
(
A1

)
+ �

(
A2

)))]}�
, � ∈ [0, 1)

(4.1)

I𝛼
a+,g

f (x) =
1

Γ(𝛼) �
x

a

g�(t)f (t)

(g(x) − g(t))1−𝛼
dt, 𝛼 > 0, −∞ ≤ a < b ≤ ∞

which is finite, where 𝛽 > 0, Γ(Z) = ∫ ∞

0
tZ−1e−tdt, Z > 0 

and X, Y ∈ [a, b], −∞ ≤ a < b ≤ ∞.

(4.2)

I
�

a+,g,h
h(X, Y) =

1

Γ(�)2 ∫
X

a ∫
Y

a

g�(t)h�(s)h(t, s)

(g(X) − g(t))1−�(h(Y) − h(s))1−�
dsdt
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Now, we shall check whether the operator (4.2) is strongly 
continuous semigroup on C([a, b] × [a, b],ℝ) or not.

It is observed that this operator (4.2) is continuous.
F o r  h1(X, Y), h2(X, Y) ∈ C([a, b] × [a, b],ℝ)  a n d 

k1, k2 ∈ ℝ , we have

so it can be said that the operator (4.2) is linear operator.
Again, for h1(X, Y), h2(X, Y) ≥ 0 we observe that

and

Hence we conclude that the operator (4.2) is not strongly 
continuous semigroup on C([a, b] × [a, b],ℝ).

Consider the space � = C(I × I) of all real continuous 
maps on I × I, where I = [0, 1] which is equipped with the 
norm

Let � be a fixed nonempty and bounded subset of � . For 
all X ∈ � and 𝜖 > 0, let �(X, �) indicates the modulus of 
continuity of X, i.e.,

Further, let

and

Similar to [7], it can be proved that the function �0 is an 
MNC in the space �.

In this part, the solvability of the following generalized 
fractional order integral equation is studied:

I
�

a+,g,h

[
k1h1(X, Y) + k2h2(X, Y)

]

=
1

Γ(�)2 ∫
X

a ∫
Y

a

g�(t)h�(s)
[
k1h1(X, Y) + k2h2(X, Y)

]

(g(X) − g(t))1−�(h(Y) − h(s))1−�
dsdt

=
k1

Γ(�)2 ∫
X

a ∫
Y

a

g�(t)h�(s)h1(X, Y)

(g(X) − g(t))1−�(h(Y) − h(s))1−�
dsdt

+
k2

Γ(�)2 ∫
X

a ∫
Y

a

g�(t)h�(s)h2(X, Y)

(g(X) − g(t))1−�(h(Y) − h(s))1−�
ds

= k1I
�

a+,g,h
h1(X, Y) + k2I

�

a+,g,h
h2(x, y)

I
�

a+,g,h

[
h1(X, Y) + h2(X, Y)

] ≠ I
�

a+,g,h

[
h1(X, Y)

]
I
�

a+,g,h

[
h2(X, Y)

]

I
�

a+,g,h
[0] = 0 ≠ I.

∥ X ∥= sup {|X(l, m)| ∶ l, m ∈ I}, X ∈ �.

�(X, �) = sup {|X(T , S) − X(U, V)| ∶ T , S, U, V ∈ I,

|T − U| ≤ �, |S − V| ≤ �}.

�(�, �) = sup {�(X, �) ∶ X ∈ �},

�0(�) = lim�→0 �(�, �).

where 0 < 𝛼 < 1, t, s ∈ I = [0, T], T > 0.

Assumptions: 

(1) H ∶ I × I ×ℝ ×ℝ → ℝ is continuous mapping satisfy-
ing 

 for some nonnegative constants A, B with A ∈ [0, 1) , 
where t, s ∈ I;p, q, l, m ∈ ℝ.

(2) The functions g, h ∶ I → ℝ+ are C1 and nondecreasing. 
Also, g′, h′ ≥ 0.

(3) k ∶ I × I × I × I ×ℝ → ℝ is continuous.
(4) Let 

 and 

 and  l e t  t he re  ex i s t s  r0 > 0  s a t i s fy ing 
Ar0 +

BK

𝛼2
(h(T) − h(0))𝛼(g(T) − g(0))𝛼 + Ĥ ≤ r0. Let 

Br0
=
{

x ∈ � ∶∥ x ∥≤ r0

}
.

Theorem 4.1 Under the hypothesis (1)-(4), equation (4.3) 
has at least one solution in �.

Proof For � ∈ �, let the operator � be defined on � as 
follows:

where t, s ∈ I.

Let t, s ∈ I be fixed and 
{

tn
}
 and 

{
sn

}
 be sequences in I 

such that tn → t and sn → s as n → ∞. Without loss of gen-
erality, we can choose tn ≥ t and sn ≥ s . Then

Now,

(4.3)

�(t, s)

= H

(
t, s,�(t, s),∫

t

0
∫

s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))
1−�

(h(t) − h(�))
1−�

d�d�

)
,

|H(t, s, p, q) − H(t, s, l, m)| ≤ A|p − l| + B|q − m|

K = sup {|k(t, s, �, �, �(�, �))| ∶ t, s, �, � ∈ I;x ∈ C(I × I)}

Ĥ = sup {|H(t, s, 0, 0)| ∶ t, s ∈ I}

(��)(t, s)

= H

(
t, s,�(t, s),∫

t

0
∫

s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))
1−�

(h(t) − h(�))
1−�

d�d�

)
,

||(��)(tn, sn) − (��)(t, s)||
≤ A||�(tn, sn) − �(t, s)||

+ B
|||�

tn

0 �
sn

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(
g(sn) − g(�)

)1−�(
h(tn) − h(�)

)1−�
d�d�

− �
t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

|||.
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where

As n → ∞ , continuity of g and h yields that ℑn → 0. Again,

Taking n → ∞ and using the continuity of g and h, it is 
observed that ℑℑn → 0. Finally,

|||�
tn

0
�

sn

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d� − �
t

0
�

s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))
(

g(s) − g(�)
)1−�(

h(t) − h(�)
)1−�

d�d�
|||

≤ |||�
tn

0
�

sn

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d� − �
t

0
�

s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d�
|||

+
|||�

t

0
�

s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d� − �
t

0
�

s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(s) − g(�)
)1−�(

h(t) − h(�)
)1−�

d�d�
|||

+
|||�

t

0
�

s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(s) − g(�)
)1−�(

h(t) − h(�)
)1−�

d�d� − �
t

0
�

s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))
(

g(s) − g(�)
)1−�(

h(t) − h(�)
)1−�

d�d�
|||

= ℑn +ℑℑn +ℑℑℑn,

ℑn =
|||�

tn

0 �
sn

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d�

− �
t

0 �
s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d�
|||

=
|||�

tn

t �
sn

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d�

+ �
t

0 �
sn

s

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(

g(sn) − g(�)
)1−�(

h(tn) − h(�)
)1−�

d�d�
|||

≤ K

�2

(
h(tn) − h(t)

)�(
g(sn) − g(0)

)�

−
K

�2

[(
h(tn) − h(t)

)�

−

(
h(tn) − h(0)

)�](
g(sn) − g(s)

)�

.

ℑℑn =

||||||
�

t

0 �
s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))
(
g(sn) − g(�)

)1−�(
h(tn) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

||||||

≤ −K �
t

0 �
s

0

g�(�)h�(�)d�d�
(
g(sn) − g(�)

)1−�(
h(tn) − h(�)

)1−�
+ K �

t

0 �
s

0

g�(�)h�(�)d�d�

(g(s) − g(�))1−�(h(t) − h(�))1−�

=
K

�2

[(
g(sn) − g(s)

)�(
h(tn) − h(0)

)�
+
(
g(sn) − g(0)

)�(
h(tn) − h(t)

)�
−
(
g(sn) − g(s)

)�(
h(tn) − h(t)

)�]
.
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Since k is a continuous function, therefore it is observed that 
ℑℑℑn → 0, as n → ∞.

Thus, �(t, s) ∈ � gives �� ∈ � . So, the mapping 
� ∶ � → � is well defined.

Let Br0
=
{
� ∈ � ∶∥ � ∥≤ r0

}
. Also, let �,� ∈ Br0

 . 
Then, for all t, s ∈ I it is observed that

Therefore, �(Br0
) ⊆ Br0

 , i.e., � ∶ Br0
→ Br0

 is well defined.
Let �,� ∈ Br0

 be such that ∥ � −� ∥≤ � where 𝜖 > 0. 
For all t, s ∈ I,

where

ℑℑℑn =
|||||�

t

0 �
s

0

g�(�)h�(�)k(tn, sn, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

|||||

≤ �
t

0 �
s

0

g�(�)h�(�)||k(tn, sn, �, �,�(�, �)) − k(t, s, �, �,�(�, �))||
(g(s) − g(�))1−�(h(t) − h(�))1−�

d�d�.

|(�𝜋)(t, s)|

≤ |||||
H

(
t, s,𝜋(t, s),�

t

0 �
s

0

g�(𝜍)h�(𝜎)k(t, s, 𝜎, 𝜍,𝜋(𝜎, 𝜍))

(g(s) − g(𝜍))1−𝛼(h(t) − h(𝜎))1−𝛼
d𝜍d𝜎

)
− H(t, s, 0, 0)

|||||
+ Ĥ

≤ A|𝜋(t, s)| + BK �
t

0 �
s

0

g�(𝜍)h�(𝜎)

(g(s) − g(𝜍))1−𝛼(h(t) − h(𝜎))1−𝛼
d𝜍d𝜎 + Ĥ

≤ Ar0 +
BK

𝛼2
(g(T) − g(0))𝛼(h(T) − h(0))𝛼 + Ĥ.

≤ r0.

|(��)(t, s) − (��)(t, s)|

=
|||||
H

(
t, s,�(t, s),�

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

)

−H

(
t, s,�(t, s),�

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

)|||||
≤ A|�(t, s) −�(t, s)|

+ B�
t

0 �
s

0

g�(�)h�(�)|k(t, s, �, �,�(�, �)) − k(t, s, �, �,�(�, �))|
(g(s) − g(�))1−�(h(t) − h(�))1−�

d�d�

≤ A ∥ � −� ∥ +
Bk�

�2
(g(T) − g(0))�(h(T) − h(0))� ,

k� = sup

{
|k(t, s, , �, �,�) − k(t, s, �, �,�)| ∶ t, s, �, � ∈ I,

|� −�| ≤ �, |�| ≤ r0, |�| ≤ r0.

}

Since k is an uniformly continuous function on 
I × I × I × I × [−r0, r0] ,  therefore k� → 0 ,  as � → 0. 
Therefore, ∥ �� − �� ∥→ 0 , as � → 0 , i.e., � is con-
tinuous on Br0

.Let P ⊆ Br0
 be nonempty. For an 

arbitrary 𝜖 > 0 , take �(t, s) ∈ P and t, s, t1, s1 ∈ I such that 
||t − t1

|| ≤ �, ||s − s1
|| ≤ �. Without loss of generality, it can 

be taken t1 ≥ t, s1 ≥ s. Now,
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Also,

||(𝔏�)(t1, s1) − (𝔏�)(t, s)||

=

||||||
H

(
t1, s1,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)

−H

(
t, s,�(t, s),�

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

)|||||

≤
||||||
H

(
t1, s1,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)

−H

(
t, s,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)||||||

+

||||||
H

(
t, s,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)

−H

(
t, s,�(t, s),�

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

)|||||
.

= ℑ +ℑℑ

||||||
�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

||||||
≤ K

�2
(g(T) − g(0))�(h(T) − h(0))� = Q(say).

Let

Therefore,

By the uniform continuity of H in I × I × [−r0, r0] × [−Q, Q] , 
we have lim�→0 C(H, �) = 0.Again,

C(H, �) = sup

{|||H(t, s, ,�, l) − H
(
t1, s1,�, l

)||| ∶ t, s, t1, s1 ∈ I,

||t − t1
|| ≤ �, ||s − s1

|| ≤ �, |�| ≤ r0, |l| ≤ Q.

}
.

ℑ =

||||||
H

(
t1, s1,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)

−H

(
t, s,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)||||||
≤ C(H, �).

ℑℑ =∣ H

(
t, s,�(t1, s1),�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

)

− H

(
t, s,�(t, s),�

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

)
∣

≤ A||�(t1, s1) − �(t, s)||

+ B

||||||
�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

||||||
.
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Let

and

On the other hand,

where

C(k, �) = sup

{|||k
(
t1, s1, �, �,�

)
− k

(
t2, s2, �, �,�

)||| ∶ t, s, t1, s1 ∈ I,

||t1 − t|| ≤ �, ||s1 − s|| ≤ �, � ∈ [−r0, r0]

}
,

C(h, �) = sup
{||h(t1) − h(t)|| ∶ t, t1 ∈ I, ||t1 − t|| ≤ �

}

C(g, �) = sup
{||g(t1) − g(t)|| ∶ t, t1 ∈ I, ||t1 − t|| ≤ �

}
.

||||||
�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

||||||

≤
||||||
�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

||||||

+

||||||
�

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

||||||

+
|||||�

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

|||||
= V1 + V2 + V3,

V1 =

||||||
�

t1

0 �
s1

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d�

||||||
≤ K

�2

{(
g(s1) − g(0)

)�(
h(t1) − h(t)

)�
−
(
g(s1) − g(s)

)�(
h(t1) − h(t)

)�
+
(
g(s1) − g(s)

)�(
h(t1) − h(0)

)�}

≤ K

�2

{(
g(s1) − g(0)

)�(
h(t1) − h(t)

)�
+
(
g(s1) − g(s)

)�(
h(t1) − h(0)

)�}

≤ 2K{C(g, �)C(h, �)}�

�2
,

V2 =

||||||
�

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))
(
g(s1) − g(�)

)1−�(
h(t1) − h(�)

)1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

||||||
≤ K

�2

{(
g(s1) − g(s)

)�(
h(t1) − h(0)

)�
+
(
g(s1) − g(0)

)�(
h(t1) − h(t)

)�
−
(
g(s1) − g(s)

)�(
h(t1) − h(t)

)�}

≤ K

�2

{(
g(s1) − g(s)

)�(
h(t1) − h(0)

)�
+
(
g(s1) − g(0)

)�(
h(t1) − h(t)

)�}

≤ 2K{C(g, �)C(h, �)}�

�2

and
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Then,

Therefore,

Since H, g, h are all continuous, therefore for all � → 0 
assumption (1) and Theorem 3.5 gives � admits at least one 
fixed point in P ⊆ Bd0

⊆ �.   ◻

Example 4.2 We consider

for all t, s, �, � ∈ [0, 1] = I.

Here,

and

For all t, s ∈ I and p, q, l, m ∈ ℝ,

Here, A =
1

2
 and B = 1. The functions g, h ∶ I → ℝ+ are C1 

nondecreasing. Also, g′, h′ > 0. The functions k and H are 
continuous and K = 1 and Ĥ =

1

2
.

Also, for r0 = 9 the inequality r0

2

+ 4(1 − 0)
1

2 (1 − 0)
1

2 +
1

2

≤ r
0

 
is satisfied. Thus, for r0 = 9 assumptions (1) − −(4) of Theo-
rem 4.1 are satisfied. Therefore, by Theorem 4.1 we conclude 
that Eq. () possesses at least one solution in C([0, 1] × [0, 1]).

V3 =
|||||�

t

0 �
s

0

g�(�)h�(�)k(t1, s1, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d� − �

t

0 �
s

0

g�(�)h�(�)k(t, s, �, �,�(�, �))

(g(s) − g(�))1−�(h(t) − h(�))1−�
d�d�

|||||

≤ C(k, �)

�2
(g(s) − g(0))�(h(t) − h(t))�

≤ C(k, �){C(g, �)C(h, �)}�

�2
.

ℑℑ ≤ A�(P, �) + B

{
4K{C(g, �)C(h, �)}�

�2
+

C(k, �){C(g, �)C(h, �)}�

�2

}
.

�(�P, �) ≤ C(H, �) + A�(P, �) + B
{

4K{C(g, �)C(h, �)}
�

�2

+
C(k, �){C(g, �)C(h, �)}

�

�2

}
.

(4.4)

�(t, s) =
ts(1 + �(t, s))

1 + ts

+ ∫
t

0
∫

s

0

�2(�, �)

(t − �)
1

2 (s − �)
1

2

(
1 + �2(�, �)

)d�d�

g(t) = h(t) = t, � =
1

2
;k(t, s, �, �,�) =

�2

1 + �2

H(t, s,�, q) =
ts(1 + �)

1 + ts
+ q.

|H(t, s, p, q) − H(t, s, l, m)| ≤ ts

1 + ts
|p − l| + |q − m|.

Conclusion

In this work, we generalized DFPT by MNC and a new 
contraction operator and also we have established the cor-
responding coupled fixed point theorem. With the help of 
this generalized DFPT, we have established the existence of 
solution of a integral equation with generalized fractional 
integral of two variables and finally illustrate the results with 
the help of an example.
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