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Abstract
In the current article we obtain the extension of Darbo’s fixed point theorem (DFPT), and
apply this theorem to prove the existence of solution of an infinite systemof implicit fractional
integral equations. We, besides that, justify the results with the help of an example. The
advantage of the proposed fixed point theory is that the requirement of the compactness
of the domain is relaxed which is essential in some fixed point theorems. Also, we have
applied it to integral equation involving fractional integral by another function which is a
generalization of many fixed point theorems as well as fractional integral equations.
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1 Introduction

The integral equations have multiple practical applications in defining specific real-world
problems and different types of real life situations, i.e., in laws of physics, the theory of
radioactive transmission, the theory of statistical mechanics, and the cytotoxic activity the
integral equations are applied for instance see (Boffi and Spiga 1983; Case and Zweifel
1967; Chandrasekhar 1960; Hu et al. 1989; Kelly 1982). Kuratowski (1930) was initiated
the notion measure of noncompactness in metric spaces (one can refer Banaś and Goebel
1980; Banaś and Mursaleen 2014 for the detailed on MNC). Darbo (1955) was the first
person to implemented the measure of noncompactness to generalized the Banach fixed
point theorem for Banach spaces. It is familiar as Darbo fixed point theorem. Recently,
numbers of articles published in connection with the solvability of different types of integral
equations, nonlinear integral equations, functional integral equations, differential equations,
infinite systems of integral equations using different fixed point theorems and measure of
noncompactness (MNC) in Banach spaces (readers can consult the papers Agarwal and
O’Regan 2004; Aghajani et al. 2014; Alotaibi et al. 2015; Banaei et al. 2020; Çakan and
Özdemir 2017; Das et al. 2019; Deep et al. 2020; Hazarika et al. 2019, 2018, 2019, ?, 2021;
Işik et al. 2020;Kazemi andEzzati 2016;Mursaleen andMohiuddine 2012;Mohammadi et al.
2020; Nashine et al. 2018, 2017; Rabbani et al. 2019; Srivastava et al. 2018 and references
therein).

Fractional calculus is the study of the derivatives as well as integrals of arbitrary order
using Gamma function. In the 16th century the concepts of fractional calculus was adopted.
Over the 19th and early 20th centuries, the theory and applications of fractional calculus
developed greatly, and countless contributors have provided interpretations for fractional
derivatives and integrals. In many branches of mathematics like porous media, viscoelasticity
and electrochemistry etc the Erdélyi–Kober fractional integrals are used (one can consulted
Chandrasekhar 1960; Erdélyi 1950; Hilfer 2000; Kober 1940; Pagnini 2012 among others).
Due to the importance of integral equations of fractional order it has become essential to
study such type of equations. Many authors considered differential and integral equations
involving Erdélyi–Kober fractional operator, few number of articleswementioned here (Arab
et al. 2020; Darwish and Sadarangani 2015; Darwish 2016, 2011; Mollapourasl and Ostadi
2015; Rabbani et al. 2020; Samko et al. 1993). Recently, some authors have studied time-
fractional diffusion problems, fractional reaction-subdiffusion problem etc (see, for instance,
Nikan et al. 2021; Nikan and Avazzadeh 2021; Nikan et al. 2021a, b).

Mohammadi et al. (2020) have established a new generalization of Darbo’s fixed point
theorem with the help of a newly defined contraction operator and applied it to a system of
integral equations. Motivated by their work, we have introduced a more general condensing
operator to established a generalization of the fixed point theorem which was investigated
in Mohammadi et al. (2020) and finally apply it to a fractional integral equation by another
function.

The main contribution of this article is that we have extended the results of the article
Mohammadi et al. (2020) to establish a generalization of Darbo’s fixed point and apply it to
obtain the existence of the solution of the following infinite system of integral equations

zn(x) = Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)
, n ∈ N.

The above system involves a fractional integral by another functionwhich is the generalization
of many other fractional integral equations.
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So it can be seen that our work a generalization of many other application of Darbo’s fixed
point theorem on a system of fractional integral equations.

Consider (E, ‖ . ‖) is a Banach space. Let B[θ, r ] be a closed ball in E centered at θ and
with radius r . If X is a nonempty subset of E , then by X̄ and ConvX we denote the closure
and convex closure of X, respectively. Moreover, letME denote the family of all nonempty
and bounded subsets of E andNE its subfamily consisting of all relatively compact sets. We
denote R the set of real numbers and R+ = [0,∞) .

Definition 1 (Banaś and Goebel 1980) A function ϑ : ME → R+ is called a MNC in E if
it satisfies the below stated conditions:

(i) for allY ∈ ME , we have ϑ(Y) = 0 implies thatY is precompact.
(ii) the family ker ϑ = {Y ∈ ME : ϑ (Y) = 0} is nonempty and ker ϑ ⊂ NE .

(iii) Y ⊆ Z 	⇒ ϑ (Y) ≤ ϑ (Z) .

(iv) ϑ
(
Ȳ
) = ϑ (Y) .

(v) ϑ (ConvY) = ϑ (Y) .

(vi) ϑ (λY + (1 − λ)Z) ≤ λϑ (Y) + (1 − λ) ϑ (Z) for λ ∈ [0, 1] .
(vii) if Yn ∈ ME , Yn = Ȳn, Yn+1 ⊂ Yn for n = 1, 2, 3, ... and limn→∞ ϑ (Yn) = 0

then
⋂∞

n=1Yn �= φ.

The family ker ϑ is said to be the kernel of measure ϑ. Observe that the intersection setY∞
from (vii) is a member of the family ker ϑ. Also since ϑ(Y∞) ≤ ϑ(Yn) for any n, we infer
that ϑ(Y∞) = 0. This givesY∞ ∈ kerϑ.

The Hausdorff MNC for a bounded set S is defined as

χ (S) = inf {ε > 0 : S has finite ε − net in X} .

The Hausdorff MNC χ in the Banach space
(
c0, ‖ . ‖c0

)
can be formulated as follows (see

Banaś and Goebel 1980):

χc0

(
D̂
)

= lim
n→∞

[
sup
u∈D̂

(
max
k≥n

| uk |
)]

, (1)

where u = (ui )∞i=1 ∈ c0 and D̂ ∈ Mc0 .

In the Banach space
(
	1, ‖ . ‖	1

)
, the Hausdorff MNC χ is defined as follows (see Banaś

and Goebel 1980):

χ	1

(
D̂
)

= lim
n→∞

[
sup
u∈D̂

( ∞∑
k=n

| uk |
)]

, (2)

where u = (ui )∞i=1 ∈ 	1 and D̂ ∈ M	1 .

Let us denote byC(I , c0), I = [a, τ ], a ≥ 0, τ > 0 the space of all continuous functions
on I with values in c0. Then C(I , c0) is also a Banach space with norm ‖ x(t) ‖C(I ,c0)=
sup
{‖ x(t) ‖c0 : t ∈ I

}
, where x(t) ∈ C(I , c0).

For any non-empty bounded subset Ê of C(I , c0) and t ∈ I , let Ê(t) =
{
x(t) : x ∈ Ê

}
.

Now, using (1), we conclude that the Hausdorff MNC for Ê ⊂ C(I , c0) can be defined as

χC(I ,c0)(Ê) = sup
{
χc0(Ê(t)) : t ∈ I

}
.

Similarly, we can define C(I , 	1), the space of all continuous functions defined on I
with values in 	1. Then C(I , 	1) is also a Banach space with the norm ‖ x(t) ‖C(I ,	1)=
sup
{‖ x(t) ‖	1 : t ∈ I

}
, where x(t) ∈ C(I , 	1).

123



  143 Page 4 of 17 A. Das et al.

Now, using (2), we conclude that the Hausdorff MNC for Ê ⊂ C(I , 	1) can be defined
by

χC(I ,	1)(Ê) = sup
{
χ	1(Ê(t)) : t ∈ I

}
.

Definition 2 (Banaś and Goebel 1980) LetX be a nonempty subset of a Banach space E and
T : X → E is a continuous operator transforming bounded subset ofX to bounded ones. We
say that T satisfies the Darbo condition with a constant k with respect to measure ϑ provided
ϑ(TY) ≤ kϑ(Y) for eachY ∈ ME such thatY ⊂ X.

Theorem 1 (Agarwal andO’Regan 2004, Schauder) LetD be a nonempty, closed and convex
subset of a Banach space Ē . Then every compact, continuous mapping T : D → D has
minimum of one fixed point.

Theorem 2 (Darbo 1955, Darbo) Let Z be a nonempty, bounded, closed and convex subset
of a Banach space Ē . Let S : Z → Z be a continuous mapping. Assume that there is a
constant k ∈ [0, 1) such that

ϑ(SM) ≤ kϑ(M), M ⊆ Z.

Then S has a fixed point.

From the above to two fixed point theorems it is clear that the Darbo fixed point theorem
is more effective than Schauder fixed point theorem. In this connection we mentioned the
following remark.

Remark 1 We have generalized Darbo’s fixed point theorem using a new contraction operator
which involves MNC to study operators whose properties can be characterized as being
intermediate between those of contraction and compact mapping. The main advantage of
this generalization using MNC is that the compactness of domain of the operator which is
essential in Schauder’s theorem has been relaxed.

We use the following concepts to established the extension of Darbo’s fixed point theorem.

Definition 3 (Hazarika et al. 2018) Let F be the class of all functions J : R+ × R+ → R+
satisfying the following conditions:

(1) max {ι,� } ≤ J (ι,�) for ι,� ≥ 0.
(2) J is continuous and nondecreasing.
(3) J (ι + �, ι1 + �1) ≤ J (ι, ι1) + J (�,�1).

For example, J (ι,�) = ι + �.

Definition 4 (Mohammadi et al. 2020) Suppose Δ is the set of all functions W : R+ → R

satisfying the following conditions:

(1) W is continuous strictly increasing function.
(2) limn→∞ W (ςn) = −∞ if and only if limn→∞ ςn = 0 for all {ςn} ⊆ R+.

For example,

(a) W1(ς) = ln (ς)

(b) W2(ς) = 1 − 1
ς p , p > 0
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(c) W3(ς) = 1 − 1
eς−1

(d) W4(ς) = 1
e−ς−eς

belongs to Δ.

Definition 5 (Mohammadi et al. 2020) Let � be the class of all functions V : R → R

satisfying:

(1) limn→∞ Vn(ς) = −∞ for all ς > 0.
(2) V(ς) < ς for all ς ≥ 0.
(3) V is increasing and continuous.

For example,

(i) V1(ς) = ς − a, a > 0 belongs to �,

(ii) V2(ς) = ς3 − 1, ς ≤ 1 belongs to �,

(iii) V3(ς) = ς
1
3 − 1, ς ≥ 1 belongs to �.

2 Generalized fixed point theorems

Theorem 3 Let P be a nonempty, bounded, closed and convex (BCC) subset of a Banach
space H. Also L : P → P is a continuous function such that

W [J (ϑ (LQ) , φ (ϑ (LQ)))] ≤ V {W [J (ϑ (Q) , φ (ϑ (Q)))]} (3)

for all Q ⊆ P, W ∈ Δ, V ∈ �, J ∈ F and φ : R+ → R+ is a continuous function,
where ϑ is an arbitrary MNC. Then L has minimum of one fixed point in P.

Proof Define a sequence (Pq) such thatP1 = P andPq+1 = Conv(LPq) for q ≥ 1. Also
LP1 = LP ⊆ P = P1, P2 = Conv(LP1) ⊆ P = P1; therefore, consequently, through
extending such framework, we obtain P1 ⊇ P2 ⊇ · · · ⊇ Pq ⊇ Pq+1 ⊇ · · · .

If there exists q̂ ∈ N satisfying ϑ(Pq̂) = 0 thenPq̂ is compact. By Schauder’s fixed point
theorem we conclude that L has a fixed point.

If ϑ(Pq) > 0 for all q ∈ N, clearly
{
ϑ(Pq)

}
is nonnegative, decreasing and bounded

below sequence.
Also, ϑ(Pq+1) = ϑ(Conv

(
LPq

)
) = ϑ(LPq) and by (3), we have

W
[
J
(
ϑ
(
Pq+1

)
, φ
(
ϑ
(
Pq+1

)))]
= W

[
J
(
ϑ
(
Conv

(
LPq

))
, φ
(
ϑ
(
Conv

(
LPq

))))]
= W

[
J
(
ϑ
(
LPq

)
, φ
(
ϑ
(
LPq

)))]
≤ V {W [

J
(
ϑ
(
Pq
)
, φ
(
ϑ
(
Pq
)))]}

≤ V2 {W [
J
(
ϑ
(
Pq−1

)
, φ
(
ϑ
(
Pq−1

)))]}
...

≤ Vq {W [J (ϑ (P1) , φ (ϑ (P1)))]} .

As q → ∞ and applying the Definition 5, we get

lim
q→∞W

[
J
(
ϑ
(
Pq+1

)
, φ
(
ϑ
(
Pq+1

)))] = −∞.
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Again, by Definition 4, we get

lim
q→∞ J

(
ϑ
(
Pq+1

)
, φ
(
ϑ
(
Pq+1

))) = 0.

It gives limq→∞ ϑ(Pq) = 0 = limq→∞ φ
(
ϑ(Pq)

)
.

SincePq ⊇ Pq+1 in the pursuit of hypothesis, we came to conclude thatP∞ =⋂∞
q=1Pq

is nonempty, closed and convex subset of P and P∞ is invariant under L. Thus Schauder’s
result implies that L has a fixed point in P∞ ⊆ P. This completes the proof. ��
Theorem 4 Let P be a nonempty BCC subset of a Banach space H. Also L : P → P is
continuous function such that

W [ϑ (LQ) + φ (ϑ (LQ))] ≤ V {W [ϑ (Q) + φ (ϑ (Q))]} (4)

for all Q ⊆ P, W ∈ Δ, V ∈ � and φ : R+ → R+ is a continuous function, where ϑ is an
arbitrary MNC. Then L has minimum of one fixed point in P.

Proof The result follows for J (ι,�) = ι + � in Theorem 3. ��
Theorem 5 Let P be a nonempty BCC subset of a Banach space H. Also L : P → P is a
continuous function such that

τ + W [ϑ (LQ) + φ (ϑ (LQ))] ≤ W [ϑ (Q) + φ (ϑ (Q))] (5)

for allQ ⊆ P, W ∈ Δ and φ : R+ → R+ is a continuous function, where ϑ is an arbitrary
MNC. Then L has minimum of one fixed point in P.

Proof The result follows by taking V(t) = t − τ, τ > 0, t ∈ R in Theorem 4. ��
Theorem 6 Let P be a nonempty BCC subset of a Banach space H. Also L : P → P is a
continuous function such that

ϑ (LQ) + φ (ϑ (LQ)) ≤ k [ϑ (Q) + φ (ϑ (Q))] (6)

for all Q ⊆ P, 0 ≤ k < 1 and φ : R+ → R+ is a continuous function, where ϑ is an
arbitrary MNC. Then L has minimum of one fixed point in P.

Proof The result follows for M(t) = ln(t), k = e−τ ∈ [0, 1) in Theorem 5. ��
Remark 2 For φ ≡ 0 in Theorem 6 we obtain Darbo’s fixed point theorem.

Definition 6 (Chang and Huang 1996) An element (p, q) ∈ X×X is called a coupled fixed
point of a mapping T : X × X → X if T(p, q) = p and T(q, p) = q.

Theorem 7 (Banaś andGoebel 1980) Supposeϑ1, ϑ2, . . . , ϑn is theMNC in E1, E2, . . . , En,

respectively.Moreover, suppose the functionX : Rn+ → R+ is convex andF (p1, p2, . . . , pn)
= 0 if and only if pl = 0 for l = 1, 2, . . . , n then ϑ(X) = F (ϑ1(X1), ϑ2(X2), . . . , ϑn(Xn))

define a MNC in E1 × E2 × . . . × En, where Xl denotes the natural projection of X into El

for l = 1, 2, . . . , n.

Example 1 (Banaś and Goebel 1980) Let ϑ be aMNC on E .Define F(p, q) = p+q, p, q ∈
R+.ThenF has all the properties mentioned in Theorem 7. Hence,ϑc f (X) = ϑ(X1)+ϑ(X2)

is a MNC in the space E × E, where Xl , l = 1, 2 denote the natural projections of X.
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Theorem 8 Let P be a nonempty BCC subset of a Banach space H. Also L : P × P → P

is a continuous function such that

W [J (ϑ (L (Q1 × Q2)) , φ (ϑ (L (Q1 × Q2))))]

≤ 1

2
V {W [J (ϑ (Q1) + ϑ (Q2) , φ (ϑ (Q1) + ϑ (Q2)))]}

for all Q1,Q2 ⊆ P, where ϑ is an arbitrary MNC and W, V, J and φ are as in Theorem
3. In addition we assume W(p + q) ≤ W(p) + W(q), p, q ≥ 0 and φ(p + q) ≤ φ(p) +
φ(q), p, q ≥ 0. Then L has at least a coupled fixed point in P.

Proof Consider a mappingLc f : P×P → P×P byLc f (x, y) = (L(x, y),L(y, x)) , x, y
s ∈ P. It is trivial that Lc f is continuous.

Let Q ⊆ P × P be nonempty. We have ϑc f (Q) = ϑ (Q1) + ϑ (Q2) is an NMC, where
Q1,Q2 are the natural projections of Q into H.

We obtain

W
[
J
(
ϑc f

(
Lc f (Q)

)
, φ
(
ϑ
(
Lc f (Q)

)))]

≤ W
[
J
(
ϑc f (L (Q1 × Q2) × L (Q2 × Q1)) , φ

(
ϑc f (L (Q1 × Q2) × L (Q2 × Q1))

))]

= W [J (ϑ (L (Q1 × Q2)) + ϑ (L (Q2 × Q1)) , φ (ϑ (L (Q1 × Q2)) + ϑ (L (Q2 × Q1))))]

≤ W [J (ϑ (L (Q1 × Q2)) + ϑ (L (Q2 × Q1)) , φ (ϑ (L (Q1 × Q2))) + φ (ϑ (L (Q2 × Q1))))]

≤ W [J (ϑ (L (Q1 × Q2)) , φ (ϑ (L (Q1 × Q2))))]

+ W [J (ϑ (L (Q2 × Q1)) , φ (ϑ (L (Q2 × Q1))))]

≤ V {W [J (ϑ (Q1) + ϑ (Q2) , φ (ϑ (Q1) + ϑ (Q2)))]}
= V

{
W
[
J
(
ϑc f (Q) , φ

(
ϑc f (Q)

))]}
.

By Theorem 3 we conclude that Lc f has minimum of one fixed point in P × P, i.e., L has
minimum of one coupled fixed point. ��
Corollary 1 Let P be a nonempty BCC subset of a Banach space H. Also L : P × P → P

is a continuous function such that

τ + W [J (ϑ (L (Q1 × Q2)) , φ (ϑ (L (Q1 × Q2))))]

≤ W [J (ϑ (Q1) + ϑ (Q2) , φ (ϑ (Q1) + ϑ (Q2)))]

for all Q1,Q2 ⊆ P, τ > 0, where ϑ is an arbitrary MNC and W, J and φ are as in
Theorem 3. Further, we assume W(p + q) ≤ W(p) + W(q), p, q ≥ 0 and φ(p + q) ≤
φ(p) + φ(q), p, q ≥ 0. Then L has at least a coupled fixed point in P.

Proof The result can be obtained by taking V(t) = t − 2τ, τ > 0 in Theorem 8. ��

3 Application

The fractional integral of a function f ∈ L1(a, b) by another function g of order α is defined
by (see Samko et al. 1993)

I α
a,g f (x) = 1

Γ (α)

∫ x

a

g′(t) f (t)
(g(x) − g(t))1−α

dt, α > 0, −∞ ≤ a < b ≤ ∞

123



  143 Page 8 of 17 A. Das et al.

defined for every continuous function f (t) and for any monotone function g(t) having a
continuous derivative.

Recently in Nieto and Samet (2017), Nieto and Samet discussed the existence of solutions
of the implicit integral equation

z(t) = F
(
t, z(t), φ

(∫ t

a

g′(s)h(t, s, z(s))

(g(t) − g(s))1−α
ds

))
, t ∈ [a, τ ], (7)

where τ > 0, a ≥ 0, α ∈ (0, 1), F : [a, τ ] × R × R → R, φ : R → R, g : [a, τ ] → R and
h : [a, τ ] × [a, τ ] × R → R.

From the above Eq. (7), we are motivated to implement the generalized Darbo fixed
point theorem and Hausdorff MNC for solvability of a system of implicit fractional integral
equations in Banach space.

In this part, the existence of solution for the following system of implicit fractional integral
equations will be studied

zn(x) = Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)
, n ∈ N, (8)

where 0 < α < 1, x ∈ I = [a, τ ], τ > 0, a ≥ 0, z(x) = (zn(x))∞n=1 ∈ H and H is a
Banach sequence space.

3.1 Existence of solution on C(I, c0)

We consider the following assumptions:

(1) The functions Bn : I × C(I , c0) × R → R is continuous and satisfies

|Bn(x, z(x), l) − Bn(x, z̄(x),m)| ≤ αn(x) |zn(x) − z̄n(x)| + βn(x) |l − m|

for z(x) = (zn(x))∞n=1 , z̄(x) = (z̄n(x))∞n=1 ∈ C(I , c0) and αn, βn : I → R+ (n ∈ N)

are continuous functions.
Also, Dn = sup

{∣∣Bn
(
x, z0, 0

)∣∣ : x ∈ I
}
, where z0 = (z0n(x))∞n=1 ∈ C(I , c0) such that

z0n(x) = 0 for all x ∈ I , n ∈ N and supn∈N Dn = D, limn→∞ Dn = 0.
(2) The functions Hn : I × I × C(I , c0) → R(n ∈ N) are continuous and there exists

Ĥ = sup {|Hn(x, w, z(w))| : x, w ∈ I ; n ∈ N; z(w) ∈ C(I , c0)} .

(3) The function g : I → R+ is in C1 and nondecreasing.
(4) Define an operator T from I × C(I , c0) × R to C(I , c0) as follows

(x, z(x)) �→ (T z)(x),

where
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(T z)(x) =
(
Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

))∞

n=1
.

(5) Let

sup
x∈I

αn(x) = α̂n, sup
x∈I

βn(x) = β̂n, sup
n∈N

α̂n = α̂, sup
n∈N

β̂n = β̂.

Also,

lim
n→∞ α̂n = 0, lim

n→∞ β̂n = 0 and 0 < α̂ < 1.

Suppose B = {z ∈ C(I , c0) :‖ z ‖C(I ,c0)≤ r
}
.

Theorem 9 Under the hypothesis (1)–(5), Eq. (8) has minimum of one solution in C(I , c0).

Proof For arbitrary x ∈ I ,

‖ z(x) ‖c0
= sup

n≥1

∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)∣∣∣∣
≤ sup

n≥1

∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)
− Bn(x, z

0(x), 0)

∣∣∣∣
+ sup

n≥1

∣∣Bn(x, z
0(x), 0)

∣∣

≤ sup
n≥1

[
αn(x) |zn(x)| + βn(x)

∣∣∣∣
∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

∣∣∣∣+ D

]

≤ α̂ ‖ z(x) ‖c0 +β̂

∫ x

a

g′(w) |Hn(x, w, z(w))|
(g(x) − g(w))1−α

dw + D

≤ α̂ ‖ z(x) ‖c0 +β̂ Ĥ
∫ x

a

g′(w)

(g(x) − g(w))1−α
dw + D

≤ α̂ ‖ z(x) ‖c0 + β̂ Ĥ

α
(g(τ ) − g(a))α + D.

Therefore,

(1 − α̂) ‖ z(x) ‖c0≤
β̂ Ĥ

α
(g(τ ) − g(a))α + D

implies

‖ z(x) ‖c0≤
αD + β̂ Ĥ (g(τ ) − g(a))α

α(1 − α̂)
= r(say).

Hence ‖ z ‖C(I ,c0)≤ r .
Consider T : I × B × R → B is an operator given by

(T z)(x) =
(
Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

))∞

n=1
= ((Tnz) (x))∞n=1 ,

where z(x) ∈ B, x ∈ I .
By assumption (4) we have

lim
n→∞ (Tnz) (x) = 0.
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Hence, (T z) (x) ∈ C(I , c0).
Again ‖ T z ‖C(I ,c0)≤ r , so T is self mapping on B.

Let z̄(x) = (z̄n(x))∞n=1 ∈ B and ε > 0 be such that ‖ z − z̄ ‖C(I ,c0)<
ε
2α̂ = δ.

Again for arbitrary x ∈ I ,

|(Tnz) (x) − (Tn z̄) (x)|

=
∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)
− Bn

(
x, z̄(x),

∫ x

a

g′(w)Hn(x, w, z̄(w))

(g(x) − g(w))1−α
dw

)∣∣∣∣
≤ αn(x) |zn(x) − z̄n(x)| + βn(x)

∫ x

a

g′(w) |Hn(x, w, z(w)) − Hn(x, w, z̄(w))|
(g(x) − g(w))1−α

dw.

As functions Hn are continuous for all n ∈ N so for ‖ z − z̄ ‖C(I ,c0)<
ε
2α̂ for all n ∈ N, we

have

|Hn(x, w, z(w)) − Hn(x, w, z̄(w))| <
αε

2β̂(g(τ ) − g(a))α
.

Therefore,

|(Tnz) (x) − (Tn z̄) (x)|

≤ α̂ |zn(x) − z̄n(x)| + β̂εα

2β̂(g(τ ) − g(a)α

∫ x

a

g′(w)

(g(x) − g(w))1−α
dw

≤ α̂ ‖ z − z̄ ‖C(I ,c0) + β̂εα

2β̂(g(τ ) − g(a))α
.
(g(τ ) − g(a))α

α

< ε.

Thus, ‖ T z − T z̄ ‖C(I ,c0)< ε when ‖ z − z̄ ‖C(I ,c0)< δ; hence, T is continuous on B.

Finally,

χc0 (T B)

= lim
n→∞ sup

z∈B
max
k≥n

∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)∣∣∣∣
≤ lim

n→∞ sup
z∈B

max
k≥n

[
α̂ |zk(x)| + β̂k Ĥ (g(τ ) − g(a))α

α

]
,

i.e.,

χc0 (T B) ≤ α̂χc0(B).

Therefore,

χC(I ,c0) (T B) ≤ α̂χC(I ,c0)(B).

Thus, by assumption (5) and Remark 2 gives T has minimum of one fixed point in B ⊆
C(I , c0). Hence, equation (8) has minimum of one solution in C(I , c0). This completes the
proof. ��
Example 2

zn(x) = zn(x)

2n + x
+ 2

n2

∫ x

0

w cos (zn(w))(
x2 − w2

) 1
2
(
w + n2

)dw, (9)

where x ∈ I = [0, 1], n ∈ N.
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Here Bn(x, z(x), l) = zn(x)

2n + x
+ l

n2
, Hn(x, w, z(w)) = cos (zn(x))

w + n2
, g(x) = x2, α =

1
2 , a = 0 and T = 1.

It is obvious that Bn is continuous for all n ∈ N and

|Bn (x, z(x), l) − Bn (x, z̄(x),m)|
≤ 1

2n + x
|zn(x) − z̄n(x)| + 1

n2
|l − m| .

Also,

αn(x) = 1

2n + x
, α̂n = 1

2n
, lim
n→∞ α̂n = 0, α̂ = 1

2
,

βn(x) = 1

n2
, β̂n = 1

n2
, lim
n→∞ β̂n = 0, β̂ = 1,

Dn = 0, D = 0, lim
n→∞ Dn = 0.

The function g(x) = x2 is in C1 and nondecreasing. Again, the functions Hn are continuous
for all n ∈ N.

If z ∈ C(I , c0) then as n → ∞ for all x ∈ I , we have

zn(x) → 0,
2

n2

∫ x

0

w cos (zn(w))(
x2 − w2

) 1
2
(
w + n2

)dw → 0.

Therefore, assumption (4) is satisfied. Thus all the assumptions of Theorem 9 are satisfied
hence Eq. (9) has a solution in C(I , c0).

3.2 Existence of solution on C(I, �1)

We consider the following assumptions:

(1) The functions Bn : I × C(I , 	1) × R → R (n ∈ R) are continuous and satisfies

|Bn(x, z(x), l) − Bn(x, z̄(x),m)| ≤ φn(x) |zn(x) − z̄n(x)| + ψn(x) |l − m|
for z(x) = (zn(x))∞n=1 , z̄(x) = (z̄n(x))∞n=1 ∈ C(I , 	1) and φn, ψn : I → R+ (n ∈ N)

are continuous functions.
Also,

∞∑
n=1

∣∣Bn
(
x, z0, 0

)∣∣

converges to zero for all x ∈ I , where z0 = (z0n(x))∞n=1 ∈ C(I , 	1) such that z0n(x) = 0
for all x ∈ I , n ∈ N.

(2) The functions Hn : I × I × C(I , 	1) → R (n ∈ N) are continuous and there exists

Qk = sup {|Hk(x, w, z(w))| : x, w ∈ I ; z(w) ∈ C(I , 	1)} ,

where n, k ∈ N. Also supk∈N Qk = Q̂.

(3) The function g : I → R+ is in C1 and nondecreasing.
(4) Define an operator T from I × C(I , 	1) × R to C(I , 	1) as follows:

(x, z(x)) �→ (T z)(x),

where

123



  143 Page 12 of 17 A. Das et al.

(T z)(x) =
(
Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

))∞

n=1
.

(5) Let

sup
x∈I

φn(x) = φ̂n, sup
n∈N

φ̂n = φ̂, 0 < φ̂ < 1.

Also, for all x ∈ I , the series
∑
n≥1

ψn(x) is convergent and

∑
n≥1

ψn(x) ≤ ψ̂.

Assume B1 = {z ∈ C(I , 	1) :‖ z ‖C(I ,	1)≤ r̂
}
.

Theorem 10 Under the hypothesis (1)–(5), Eq. (8) has minimum of one solution in C(I , 	1).

Proof For arbitrary fixed x ∈ I ,

‖ z(x) ‖	1

=
∑
n≥1

∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)∣∣∣∣

≤
∑
n≥1

∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)
− Bn(x, z0(x), 0)

∣∣∣∣+
∑
n≥1

∣∣∣Bn(x, z0(x), 0)
∣∣∣

≤
∑
n≥1

[
φn(x) |zn(x)| + ψn(x)

∣∣∣∣
∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

∣∣∣∣
]

≤ φ̂ ‖ z(x) ‖	1 +
∑
n≥1

ψn(x)
∫ x

a

g′(w) |Hn(x, w, z(w))|
(g(x) − g(w))1−α

dw

≤ φ̂ ‖ z(x) ‖	1 +
∑
n≥1

ψn(x)
∫ x

a

g′(w)Q̂

(g(x) − g(w))1−α
dw

≤ φ̂ ‖ z(x) ‖	1 +ψ̂ Q̂
∫ x

a

g′(w)

(g(x) − g(w))1−α
dw

≤ φ̂ ‖ z(x) ‖	1 + ψ̂ Q̂

α
(g(τ ) − g(a))α .

Therefore,

(1 − φ̂) ‖ z(x) ‖	1≤
ψ̂ Q̂

α
(g(τ ) − g(a))α

implies

‖ z(x) ‖	1≤
ψ̂ Q̂ (g(τ ) − g(a))α

α(1 − φ̂)
= r(say).

Hence, ‖ z ‖C(I ,	1)≤ r̂ .
Consider T : I × B1 → B1 be an operator given by

(T z)(x) =
(
Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

))∞

n=1
= ((Tnz) (x))∞n=1 ,

where z(x) ∈ B1, x ∈ I .
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By assumption (4) it follows that ∑
n≥1

(Tnz) (x)

is finite and unique. Hence (T z) (x) ∈ C(I , 	1).
Again ‖ T z ‖C(I ,	1)≤ r̂ , so T is self-mapping on B1.

Let z̄(x) = (z̄n(x))∞n=1 ∈ B1 and ε > 0 be such that ‖ z − z̄ ‖C(I ,	1)<
ε

2φ̂
= δ.

Again for arbitrary x ∈ I ,

|(Tnz) (x) − (Tn z̄) (x)|

=
∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)
− Bn

(
x, z̄(x),

∫ x

a

g′(w)Hn(x, w, z̄(w))

(g(x) − g(w))1−α
dw

)∣∣∣∣
≤ φn(x) |zn(x) − z̄n(x)| + ψn(x)

∫ x

a

g′(w) |Hn(x, w, z(w)) − Hn(x, w, z̄(w))|
(g(x) − g(w))1−α

dw.

As functions Hn are continuous for all n ∈ N so for ‖ z − z̄ ‖C(I ,	1)<
ε

2φ̂
for all n ∈ N, we

have

|Hn(x, w, z(w)) − Hn(x, w, z̄(w))| <
αε

2ψ̂(g(T ) − g(a))α
.

Therefore,∑
n≥1

|(Tnz) (x) − (Tn z̄) (x)|

≤ φ̂
∑
n≥1

|zn(x) − z̄n(x)| + εα

2ψ̂(g(T ) − g(a)α

∫ x

a

g′(w)
∑

n≥1 ψn(x)

(g(x) − g(w))1−α
dw

≤ φ̂ ‖ z − z̄ ‖C(I ,	1) + ψ̂εα

2ψ̂(g(τ ) − g(a))α
.
(g(T ) − g(a))α

α

< ε.

Therefore, ‖ T z − T z̄ ‖C(I ,	1)< ε when ‖ z − z̄ ‖C(I ,	1)< δ hence T is continuous on B1.

Finally,

χ	1 (T B1)

= lim
n→∞ sup

z∈B1

∑
k≥n

∣∣∣∣Bn

(
x, z(x),

∫ x

a

g′(w)Hn(x, w, z(w))

(g(x) − g(w))1−α
dw

)∣∣∣∣

≤ lim
n→∞ sup

z∈B1

⎡
⎣φ̂
∑
k≥n

|zk(x)| + Q̂ (g(τ ) − g(a))α
(∑

k≥n ψk(x)
)

α

⎤
⎦ ,

i.e.,

χ	1 (T B1) ≤ φ̂χ	1(B1).

Therefore,

χC(I ,	1) (T B1) ≤ φ̂χC(I ,	1)(B1).

Thus, assumption (5) and Remark 2 gives T a minimum of one fixed point in B1 ⊆ C(I , 	1).
Hence, equation (8) has minimum of one solution in C(I , 	1). This completes the proof. ��
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Example 3 We consider the following systems of fractional equations:

zn(x) = zn(x)

3n2 + x
+ 3

n2

∫ x

0

w2 sin (zn(w))(
x3 − w3

) 1
2
(
w + n2

)dw, (10)

where x ∈ I = [0, 1], n ∈ N.

Here Bn(x, z(x), l) = zn(x)

3n2 + x
+ l

n2
, Hn(x, w, z(w)) = sin (zn(x))

w + n2
, g(x) = x3, α =

1
2 , a = 0 and T = 1.

It is obvious that Bn is continuous for all n ∈ N and

|Bn (x, z(x), l) − Bn (x, z̄(x),m)|
≤ 1

3n2 + x
|zn(x) − z̄n(x)| + 1

n2
|l − m| .

Also

φn(x) = 1

3n2 + x
, φ̂n = 1

3n2
, φ̂ = 1

3
, ψn(x) = 1

n2
,

∞∑
n=1

ψn(x) =
∞∑
n=1

1

n2
= π2

6
,

∞∑
n=1

∣∣Bn(x, z
0, 0)

∣∣ = 0.

The function g(x) = x3 is in C1 and nondecreasing. Again, the functions Hn are continuous
for all n ∈ N and

|Hn(x, w, z(w))| ≤ 1

n2
,

which gives Qn = 1
n2

and Q̂ = 1.
If z ∈ C(I , 	1) then

∞∑
n=1

∣∣∣∣∣∣
zn(x)

3n2 + x
+ 3

n2

∫ x

0

w2 sin (zn(w))(
x3 − w3

) 1
2
(
w + n2

)dw
∣∣∣∣∣∣

≤ 1

3 + x

∞∑
n=1

|zn(x)| + 3
∞∑
n=1

∫ x

0

w2 |sin (zn(w))|(
x3 − w3

) 1
2
(
w + n2

)dw

≤ 1

3

∞∑
n=1

|zn(x)| + 3
∞∑
n=1

∫ x

0

w2 |zn(w)|(
x3 − w3

) 1
2
(
w + n2

)dw

≤ 1

3
‖z‖C(I ,	1) +

⎧⎨
⎩
∫ x

0

3w2

(
x3 − w3

) 1
2
(
w + n2

)dw
⎫⎬
⎭ ‖z‖C(I ,	1)

≤
(
1

3
+ 2

)
‖z‖C(I ,	1)

= 7

3
‖z‖C(I ,	1) < ∞.

Therefore, assumption (4) is satisfied. Thus, all the assumptions of Theorem 10 are obtained.
Hence, Eq. (10) has a solution in C(I , 	1).
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4 Conclusion

In this article, we introduced a new condensing operator and established a generalization of
Darbo’s fixed point theorem and finally apply it to a system of fractional integral equation
by another function.

The main contribution of this article is that we have extended the results of the article
(Mohammadi et al. 2020) to established a generalization of Darbo’s fixed point and applied
it to obtain the existence of solution of system of fractional integral equations by another
function which is the generalization of many other fractional integrals. Hence, the method
applied in this article can be applied to system of many other fractional integral equations
which are just particular cases of fractional integral equation by another function.
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Banaś J, Mursaleen M (2014) Sequence spaces and measures of noncompactness with applications to differ-
ential and integral equations. Springer, New Delhi
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