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Abstract

Purpose – The authors study the interdisciplinary relation between graph and algebraic structure ring
defining a new graph, namely “non-essential sum graph”. The nonessential sum graph, denoted byNES(R), of a
commutative ring R with unity is an undirected graph whose vertex set is the collection of all nonessential
ideals of R and any two vertices are adjacent if and only if their sum is also a nonessential ideal of R.
Design/methodology/approach – The method is theoretical.
Findings – The authors obtain some properties of NES(R) related with connectedness, diameter, girth,
completeness, cut vertex, r-partition and regular character. The clique number, independence number and
domination number of NES(R) are also found.
Originality/value – The paper is original.
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1. Introduction
The growth of interdisciplinary study of graph and algebra took place after the introduction
of zero-divisor graph by Istvan Back [1]. Some of the interesting graphs are comaximal graph
of commutative ring [2], intersection graph of ideals of rings [3], total graph of commutative
ring [4], etc. In [5], Atani et al. introduced a graph associated to proper nonsmall ideals of a
commutative ring, namely, small intersection graph. The small intersection graph of a ringR,
denoted byG(R), is an undirected graphwith vertex set is the collection of all nonsmall proper
ideals of R and any two distinct vertices are adjacent if and only if their intersection is not
small in R. Taking this insight of small intersection graph of a ring, we, in this paper, define
nonessential sum graph of an Artinian ring.

To continue this sequel, we are going to remember some definitions and notations from
ring and graph. Let R be a commutative ring with unity. An ideal I of R is said to be essential
in R if I∩J ≠ 0, whenever J is a nonzero ideal of R. The sum of all minimal ideals of R is known
as socle of R, denoted by socðRÞ. We use minðRÞ to denote the collection of all minimal ideals
of R. The ring R is said to be an Artinian ring if every descending chain of R terminates. In an
Artinian ring, every ideal contains a minimal ideal.

Let G be an undirected simple graph with vertex set V ðGÞ and edge set EðGÞ. G is said to
be a null graph if VðGÞ ¼ f and that G is said to be empty if EðGÞ ¼ f. We denote degree of
v∈VðGÞ by degðvÞ. If degðvÞ ¼ 1, then v is called an end vertex. G is complete if any two
vertices are adjacent. G is said to be r-regular if degree of each vertex of G is r. A walk in G is
an alternating sequence of vertices and edges, v0x1v1 . . . xnvn in which each edge xi is vi−1vi.
A closed walk has the same first and last vertices. A path is a walk in which all vertices are
distinct; a circuit is a closed walk which all its vertices are distinct (except the first and last).
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The length of a circuit is the number of edges in the circuit. The length of the smallest circuit
of G is called the girth of G, denoted by girthðGÞ. G is connected if there is a path between
every two distinct vertices. G is disconnected if it is is not connected. A vertex of the
connected graph G is said to be a cut vertex if removal of it makes G disconnected. If x and y
are two distinct vertices of G, then dðx; yÞ is the length of the shortest path from x to y and if
there is no such path then dðx; yÞ ¼ ∞. The diameter of G is the maximum distance among
distances between all pair of vertices of G, denoted by diamðGÞ. G is said to be a bipartite
graph if the vertex set of G can be partitioned into two disjoint subsets V1 and V2 such that
every edge of G joins V1 and V2. If jV1j ¼ m, jV2j ¼ n and if every vertex of V1 (or V2) is
adjacent to all vertices ofV2, then the bipartite graph is said to be complete and is denoted by
Km;n. If eitherm or n is equal to 1, thenKm;n is said to be a star. An r-partite graph is a graph
whose vertex set is partitioned into r subsets with no edge has both ends in any one subset.
If each vertex of a partite subset is joined to every vertex that is not in that partite subset, then
the r-partite graph is said to be complete. A complete subgraph of G is called a clique. The
number of vertices in the largest clique ofG is called the clique number ofG, denoted byωðGÞ.
The neighborhood NðvÞ of a vertex v in G is the set of vertices which are adjacent to v.
For each S ⊆VðGÞ, NðSÞ ¼ ∪v∈SNðvÞ and N ½S� ¼ NðSÞ∪S. A set of vertices S in G is a
dominating set, if N ½S� ¼ V . The domination number, γðGÞ, of G is the minimum cardinality
of a dominating set of G. An independent set of G is a set of vertices of G such that no two
vertices are adjacent in that vertex set. The independence number of G is the number of
vertices in the largest independence set in G, denoted by αðGÞ.

In this paper, we introduce nonessential sum graph of commutative ring with unity. Let R
be a commutative ringwith unity. The nonessential sumgraph ofR, denoted byNESðRÞ, is an
undirected graph with vertex set as the collection of all nonessential ideals of R and any two
verticesA andB are adjacent if and only ifA∩B is also a nonessential ideal ofR. In this article,
we are mainly interested in nonessential sum graph of Artinian ring.

Any undefined terminology can be obtained in [7–8, 15–20].

2. Connectedness of nonessential sum graph
In this section, we obtain some results related to connectedness, diameter, girth,
completeness, cut vertex, partiteness and regular character. We start with a remark.

Remark 2.1. An ideal A is nonessential ideal in R if and only if A⊆ socðRÞ. If B is a
nonessential ideal of R then every ideal which is contained in B is also a nonessential ideal of
R. Ifm is a minimal ideal of R and if A and B are two ideals such thatm⊆Aþ B, thenm⊆A
or m⊆B.

Lemma 2.2. If minðRÞ ¼ fmigi∈λ, where λ is an index set and μ is a finite subset of λ, thenP
μmi is a nonessential ideal of R.

Proof. If possible suppose K ¼ P
μmi is an essential ideal of R. Since each mj ≠ ð0Þ, so

K∩mj ≠ ð0Þ for j∉ μ, which implies thatmj ⊆K. But it is a contradiction byRemark 2.1. Hence

the lemma. ,
From this onwards, R is an Artinian ring.

Theorem 2.3. NESðRÞ is a null graph if and only if R contains exactly one minimal ideal.

Proof. First consider that NESðRÞ is a null graph. On the contrary, assume thatm1 andm2

are two distinct minimal ideals ofR. Som1∩m2 ¼ 0and this provides that bothm1 andm2 are
nonessential ideals of R, a contradiction. Conversely, suppose that R has exactly one minimal
ideal m, say. If m is the only nontrivial proper ideal of R, then obviously NESðRÞ is a null
graph. If A is a nontrivial proper ideal of R with A≠m, then it is easy to observe that A is
essential in R. The proof is complete.,
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Theorem 2.4. NESðRÞ is an empty graph if and only if R has exactly two minimal ideals,
which are the only nonessential ideals of R.

Proof. Let NESðRÞ be an empty graph. Then by Theorem 2.3 jmin (R j≠ 1. If jminðRÞj≥ 3
and m1; m2; m3 ∈ minðRÞ, then m1 and m2 are adjacent by Lemma 2.2. Therefore,
jminðRÞj ¼ 2 and so we take jminðRÞj ¼ fm1; m2g with m1 ≠m2. Clearly m1 and m2 are
nonessential. If I is any other nonessential ideal which is different fromm1 andm2, thenmi ⊂ I
for i ¼ 1; 2. This gives that I and mi are adjacent, a contradiction. Thus m1 and m2 are the
only nonessential ideals of R. For the other direction, we consider R has exactly two minimal
ideals, which are the only nonessential ideals of R. Then m1 þm2 ¼ socðRÞ is essential. So,
NESðRÞ is an empty graph. This completes the proof. ,

Theorem 2.5. The following statements are equivalent:

(1) NESðRÞ is disconnected.
(2) jminðRÞj ¼ 2.

(3) NESðRÞ ¼ G1∪G2, where G1 and G2 are two disjoint complete subgraphs of NESðRÞ.
Proof. ðiÞ0ðiiÞ Suppose that NESðRÞ is disconnected. We consider G1 and G2 are two
components of NESðRÞ and I, J be two ideals such that I ∈V ðG1Þ and J ∈V ðG2Þ. Take the
minimal ideals m1 and m2 with m1 ⊆ I and m2 ⊆ J. If m1 ¼ m2, then I −m1 − J is a path, a
contradiction. This asserts thatm1 ≠m2. Again, if jminðRÞj≥ 3, thenm1 þm2 is nonessential
in R. From this we get I −m1 −m2 − J is a path, a contradiction. Therefore jminðRÞj ¼ 2.

ðiiÞ0ðiiiÞAssume that jminðRÞj ¼ 2. Then we obtain socðRÞ ¼ m1 þm2, where m1 and
m2 are the minimal ideals of R. LetGi ¼ fI ⊆R : mi ⊆ I and I is nonessential inRg. Let I and J
be two nonadjacent vertices in G1, then I þ J is essential in R, which implies socðRÞ⊆ I þ J.
Hence m2 ⊆ I or m2 ⊆ J, a contradiction because in that case either I is essential or J is
essential. So, G1 is complete subgraph of NESðRÞ. In the same way, G2 is also a complete
subgraph of NESðRÞ. Suppose K and L are two adjacent vertices where K ∈VðG1Þ and
L∈V ðG2Þ. Since socðRÞ ¼ m1 þm2 ⊆K þ L, so K þ L is essential, a contradiction. Thus
NESðRÞ ¼ G1∪G2, where G1 and G2 are two disjoint complete subgraphs of NESðRÞ.

ðiiiÞ0ðiÞ The proof is obvious.
Theorem 2.6. The diameter of NESðRÞ is 1; 2 or∞.

Proof. If NESðRÞ is disconnected then diamðNESðRÞÞ ¼ ∞. Suppose that NESðRÞ is
connected. If I and J are two nonadjacent vertices of NESðRÞ then I þ J is essential in R.
Consider the minimal idealsm1 andm2 withm1 ⊆ I andm2 ⊆ J. Ifm1 þ J is nonessential, then
I −m1 − J is a path, which gives dðI ; JÞ ¼ 2. Similarly, if m2 þ I is nonessential in R, then
dðI ; JÞ ¼ 2. Suppose that m1 þ J and m2 þ I are both essential in R. Since NESðRÞ is
connected, so jminðRÞj≥ 3. Let m3 ∈minðRÞ. Since I þ J is essential in R, therefore
m3 ⊆ I þ J. This implies m3 ⊆ I or m3 ⊆ J. If we take m3 ⊆ I then obviously m3 þ I is
nonessential in R. We assert thatm3 þ J is nonessential. If possible,m3 þ J is essential in R,
then m1 ⊆ socðRÞ⊆m3 þ J, which gives m1 ⊆ J. Hence m1 þ J ¼ J is nonessential, a
contradiction. Therefore I −m3 − J is a path. Thus diamðI ; JÞ ¼ 2. ,

Theorem 2.7. If NESðRÞ contains a cycle, then girthðNESðRÞÞ ¼ 3.

Proof. First if we consider jminðRÞj ¼ 2, then by Theorem 2.5 NESðRÞ ¼ G1∪G2, whereG1

and G2 are two disjoint complete subgraphs of NESðRÞ. Therefore in this case,
girthðNESðRÞÞ ¼ 3, whenever NESðRÞ contains a cycle. Next, when jminðRÞj≥ 3,
m1 þm2; m2 þm3; m3 þm1 are nonessential in R where mi ∈ minðRÞ; i ¼ 1; 2; 3. Thus
m1 −m2 −m3 −m1 is a cycle. Hence girthðNESÞðRÞ ¼ 3. ,
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Theorem 2.8. Let R contain finitely many minimal ideals, then the following holds:

(1) There exists no vertex in NESðRÞwhich is adjacent to every other vertex.

(2) NESðRÞ is not a complete graph.

Proof. To prove (i ), let minðRÞ ¼ fm1; m2; . . . ; mtg. Assume that there exists a vertex I in
NESðRÞ such that I is adjacent to every other vertex. Let mi ⊆ I for some i. Let K ¼ P

j≠imj,
which is nonessential inR. ThusK is a vertex in NESðRÞ. Now,K þ I ⊇

P
j≠i þmi ¼ socðRÞ.

Hence K þ I is essential, a contradiction to the fact that I is adjacent to every other vertex.
Hence the result.

(ii) Clearly NESðRÞ is not complete by (i). ,

Theorem 2.9. If NESðRÞ is connected, then NESðRÞ has no cut vertex.
Proof. On the contrary assume that I is a cut vertex of NESðRÞ. Then NESðRÞnfIg is

disconnected. Thus, there are vertices J and K with I lies in every path joining K to J. By
Theorem 2.6, dðK; JÞ ¼ 2 and therefore J − I −K is a path. We claim that I is a minimal ideal
of R. If not, there exists an ideal L of R such that L⊆ I. As I is nonessential in R, therefore L is
also nonessential in R. Since J þ L⊆ J þ I and J þ I is nonessential in R, so J þ L is
nonessential inR. In the same direction,K þ L is also nonessential inR. So, J −L−K is a path
in NESðRÞnfIg, which is a contradiction. Thus, I is a minimal ideal of R. Now, we assert that
there exist a minimal ideal mi ≠ I of R such that mi ? J. If not then mi ⊆ J for each
Ið≠miÞ∈minðRÞ and so

P
mi≠I

mi ⊆ J. This gives that socðRÞ ¼ I þP
mi≠I

mi ⊆ I þ J, a

contradiction to the fact that I þ J is nonessential. Similarly, there exists mjð≠IÞ such that
mj?K. Now we see that for each mt ∈minðRÞ either mt ⊆ J or mt ⊆K. Since J þ K is
essential,mt ⊂ socðRÞ⊆ J þ K, which impliesmt ⊆ J ormt ⊆K. Let I ≠mi; mj ∈minðRÞ such
that mi ? J and mj?K. Therefore, mi ⊆K and mj ⊆ J. So, K −mi −mj − J is a path in
NESðRÞnfIg, a contradiction. Therefore, NESðRÞ has no cut vertex. ,
Theorem 2.10. NESðRÞ is not a complete r-partite graph.

Proof. If possible assume that NESðRÞ is a complete r-partite graph with r parts
V1; V2; . . . ; Vr. Since two minimal ideals are always adjacent, by Remark 2.1, so each Vi

contains at most one minimal ideal. Thus we get jminðRÞj≤ r. Our claim is jminðRÞj ¼ r.
Suppose minðRÞ ¼ fm1; m2; . . . ; mtg and t < r. Without loss of generality we can take
mi ∈Vi for 1≤ i≤ t. So, Vtþ1 contains no minimal ideal. Since minðRÞ is finite, so Pj≠imj is

nonessential in R. Now,
P

j≠imj þmi ¼ socðRÞ, so P
j≠imj and mi are not adjacent. ThusP

j≠imj ∈Vi asmi ∈Vi. Let I ∈Vtþ1 andmk ⊆ I for somemk ∈minðRÞ. So, I is adjacent tomk.

Since NESðRÞ is assumed to be complete r-partite and mk ∈Vk, so I is adjacent to every
element ofVk, which implies I is adjacent to

P
i≠kmi, a contradiction. Therefore, jminðRÞj ¼ r.

Now, consider J ¼ Pr
i¼3mi. Clearly J is nonessential inR byRemark 2.1. As J is adjacent tom1

andm2, so J ∉V1; V2. Moreover, J þmi ¼ J for 3≤ i≤ r. So, J is adjacent to all minimal ideals
of R. We get that J ∉Vi for each i, a contradiction. Hence the theorem. ,

Theorem 2.11. The following statements holds:

(1) NESðRÞ contains an end vertex if and only if NESðRÞ ¼ G1∪G2, where G1 and G2 are
two disjoint complete subgraphs of NESðRÞ and jV ðGiÞj ¼ 2 for some i ¼ 1; 2.

(2) NESðRÞ is not a star graph.
Proof. (i) Let I be an end vertex of NESðRÞ. So, degðIÞ ¼ 1. Suppose jminðRÞj≥ 3. For each
mi ∈minðRÞ,mi is adjacent to every other minimal ideal of R, so degðmiÞ≥ 2. Hence I is not a
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minimal ideal. We can assume m1 ⊆ I. Hence I and m1 are adjacent. Since degðIÞ ¼ 1, so the
only vertex adjacent to I ism1 andmj?I ; j≠ 1. Again I andm2 are not adjacent, so I þm2 is
essential. So we get, mj ⊆ socðRÞ⊆ I þm2 for j≠ 1; 2, which implies mj ⊆ I for j≠ 1, a
contradiction. So, jminðRÞj ¼ 2. By Theorem 2.5, NESðRÞ ¼ G1∪G2, where G1 andG2 are two
disjoint complete subgraphs of NESðRÞ. Let I ∈VðGiÞ. Since Gi is a complete subgraph and
degðIÞ ¼ 1, so jV ðGiÞj ¼ 2. The converse part is clear.

(ii) Suppose that NESðRÞ is a star graph. So, NESðRÞ contains an end vertex. By the
previous part jminðRÞj ¼ 2 and then by Theorem 2.5, the graph is disconnected. Hence,
NESðRÞ is not a star graph. ,

Theorem 2.12. The following statements holds:

(1) If I and J are two vertices of NESðRÞ such that I ⊆ J, then degðIÞ≥ degðJÞ.
(2) If NESðRÞ is an r-regular graph then jVðNESðRÞÞj ¼ 2r þ 2.

Proof. (i) Suppose I and J are two vertices of NESðRÞsuch that I ⊆ J. LetK be a vertex adjacent
to J. So, J þ K is nonessential in R. As I þ K ⊆ J þ K , so I þ K is nonessential in R. Thus,
each vertex adjacent to J is also adjacent to I. Hence degðIÞ≥ degðJÞ.

(ii) Let NESðRÞ be an r-regular graph. So, for each mi ∈minðRÞ, degðmiÞ ¼ r. Since mi is
adjacent to each minimal ideal, by Remark 2.1, so minðRÞ is finite. Suppose, jminðRÞj≥ 3, so
degðm1 þm2Þ≤ degðm1Þ by (i). Also, degðm1 þm2Þ≠ degðm1Þ, since

P
j≠2mj is adjacent to

m1 but not tom1 þm2. Thus, degðm1 þm2Þ < degðm1Þ, a contradiction. So, jminðRÞj≤ 2. If
jminðRÞj ¼ 1 then NESðRÞ is null. Therefore, jminðRÞj ¼ 2. By Theorem 2.5, NESðRÞ ¼
G1∪G2, where G1 and G2 are two disjoint complete subgraphs of NESðRÞ. Let
minðRÞ ¼ fm1; m2g and m1 ∈G1. Since degðm1Þ ¼ r, so jG1j ¼ r þ 1. In the same
direction, jG2j ¼ r þ 1. Hence, jVðNESðRÞÞj ¼ 2r þ 2. ,

3. Clique number, independence number, domination number of nonessential
sum graph
In this section, we will find clique number, independence number, domination number
of NESðRÞ.
Theorem 3.1. The following holds:

(1) ωðNESðRÞÞ≥ jminðRÞj.
(2) If ωðNESðRÞÞ < ∞, then number of minimal ideals of R is finite.

(3) ωðNESðRÞÞ ¼ 1 if and only if minðRÞ ¼ fm1; m2g and these two are the only
nonessential ideals in R.

(4) If the number of minimal ideals of R is finite, then ωðNESðRÞÞ≥ 2jminðRÞj−1 − 1.

Proof. (i) Since any two minimal ideals of R are adjacent, by Lemma 2.2, the subgraph with
vertex set fmigmi∈minðRÞ of NESðRÞ is complete. So, ωðNESðRÞÞ≥ jminðRÞj.

(ii) If ωðNESðRÞÞ < ∞, then by (i) the number of minimal ideals of R is finite.
(iii) It is clear from Theorem 2.4.
(iv) Let minðRÞ ¼ fm1; m2; . . . ; mtg and for each 1≤ i≤ t, take Ai ¼ fm1; m2; . . . ;

mi−1; miþ1; . . . ; mtg. Let PðAiÞ be the power set of Ai. For each Xð≠fgÞ∈PðAiÞ, consider
RX ¼ P

T∈XT. Clearly TX is nonessential. Also, subgraph with vertex set fRXgX∈PðAiÞ is a
complete subgraphwhich is clear by Lemma 2.2. Now, jPðAiÞnfgj ¼ 2jminðRÞj−1 − 1. Therefore�
�fRXgX∈PðAiÞ

�
� ¼ 2jminðRÞj−1 − 1. Hence, ωðNESðRÞÞ≥ 2jminðRÞj−1 − 1. ,
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Theorem 3.2. The following holds:

(1) γðNESðRÞÞ≤ 2.

(2) minðRÞ is finite if and only if γðNESðRÞÞ ¼ 2 and minðRÞ is infinite if and only if
γðNESðRÞÞ ¼ 1.

Proof. (i) Since NESðRÞ is not a null graph, jminðRÞj≥ 2. Consider T ¼ fm1; m2g, where
m1; m2 ∈ minðRÞ. Take a vertex I in NESðRÞ. If m1 ⊆ I or m2 ⊆ I, then m1 þ I or m2 þ I is
non-essential in R. Then I is adjacent to m1 or m2. Suppose that m?I and m?J. If I is not
adjacent tom1, thenm1 þ I is essential in R. So,m2 ⊆ socðRÞ⊆m1 þ I, which impliesm2 ⊆ I,
a contradiction. Therefore I is adjacent to m1. In the same way, I is adjacent to m2.
Thus γðNESðRÞÞ≤ 2.

(ii) If minðRÞ is finite, then by Theorem 2.8, there exists no vertex which is adjacent to
every other vertex. So, γðNESðRÞÞ≠ 1. Therefore, γðNESðRÞÞ ¼ 2 by part (i). In the opposite
direction, let γðNESðRÞÞ ¼ 1. So, the graph has a vertex which is adjacent to every other
vertex. So the graph does not contain finite minimal ideals. Hence the result. ,

Theorem3.3. LetR contain finite number of minimal ideals. Then αðNESðRÞÞ ¼ jminðRÞj.
Proof. Let minðRÞbe finite and minðRÞ ¼ fm1; m2; . . . ; mtg. Since f

Pt
j¼1;j≠ 1mjgti¼1

is an

independent set in NESðRÞ, therefore t ≤ αðNESðRÞÞ. Assume that αðNESðRÞÞ is equal to p
and S ¼ fI1; I2; . . . ; Ipg is themaximal independent set. For each I ∈ S, I is nonessential inR.

So, there exists a minimal ideal m such that m?I . If p > t, then there exists 1≤ i; j≤ p and

m∈minðRÞsuch thatm?Ii andm?Ij. Thusm?Ii þ Ij. Otherwise,m⊆ Ii þ Ijwhich leads to

a contradiction. As S is independent, so Ii þ Ij is essential, which impliesm⊆ socðRÞ⊆ Ii þ Ij,

a contradiction. Therefore, αðNESðRÞÞ ¼ jminðRÞj. If we take αðNESðRÞÞ ¼ ∞, then by

similar argument we get a contradiction. Hence, αðNESðRÞÞ ¼ jminðRÞj. ,
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