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Abstract

For a non-commutative ring R, the left total directed graph of R is a directed graph with vertex set as R and for the vertices
x and y, x is adjacent to y if and only if there is a non-zero r € R which is different from x and y, such that rx + yr is a left
zero-divisor of R. In this paper, we discuss some very basic results of left (as well as right) total directed graph of R. We also study
the coloring of left total directed graph of R directed graph.
© 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The total graph of a commutative ring with unity was introduced by Anderson and Badawi in [1]. They considered
the total graph 7 (I'(R)) of a commutative ring R as an undirected graph with vertex set as R and any two vertices of
T (I'(R)) are adjacent if and only if their ring sum is a zero-divisor of R. They studied the characteristics of total graph
and its two induced subgraphs by taking the cases when the set of zero-divisors of R is an ideal of R and when this set
is not an ideal of R. In [2], Akbari et al. continued this concept of total graph. Ahmad Abbasi and Shokoofe Habibi [3]
investigated the total graph of a commutative ring with respect to proper ideals. Anderson and Badawi [4] studied the
total graph of a commutative ring without zero element. M. H. Shekarriz et al. observed some basic graph theoretic
properties of the total graph of a finite commutative ring in [5]. The insight for total graph is extended to modules
also. The total graph of a commutative ring with respect to the proper submodules of a module was interpreted by
A. Abbasi and S. Habibi in [6]. The total torsion element graph of a module over a commutative ring was discussed
by S. Atani and S. Habibi in [7]. These kinds of continuous extension of Anderson and Badawi’s [1] work signify its
utility in graphical aspects of ring-theoretic structures.

To interpret this concept in directed graph, we take the definition in a different way. We introduce left and right
total directed graphs of non-commutative rings. The left total directed graph of a non-commutative ring R, denoted
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by T;(I'(R)), is a directed graph with all elements of R as vertices. Any x, y € R, the vertex x is adjacent to y if and
only if there exists a non-zero r, which is not equal to x and y, in R such that rx + yr is a left zero-divisor of R. More
specifically, the non-zero element r is considered either a (left) zero-divisor or a (left) regular element. In this paper,
we take the non-zero element r as left non-zero zero-divisor for the adjacency relation of two vertices. Henceforth,
we continue this discussion by taking the non-zero element r as left non-zero zero-divisor. The induced subgraphs
Z;(I'(R)) and Reg;(I'(R)) of T;(I'(R)) with vertex sets Z;(R) (set of left zero-divisors of R) and Reg;(R) (set of left
regular elements of R) respectively, are studied. The idea of its dual concept that is, right total directed graph 7, (I'(R))
and its respective induced subgraphs Z,(I'(R)) and Reg,(I'(R)) of a non-commutative ring R, are also taken under
consideration. We do not state or establish each and every dual concept in our discussion, as almost all results hold
for the respective dual concept.

Note that the non-zero zero-divisor r is not independent for the choice of adjacency of two vertices. That is the
underlying (undirected) graph of the directed graph is not simple. Recollect a simple (undirected) graph contains
at most one edge (arc is called an edge in an undirected graph) between a pair of vertices. Though a part of
our discussions is on basic characteristics of ring-theoretic concepts, yet this motivates us for the establishment of
interesting results.

2. Preliminaries

Throughout our discussion, unless otherwise specified, rings mean non-commutative rings. From this onward, R
denotes a non-commutative ring, G is a directed graph, and for any A € R, A* contains all non-zero elements of A.

A digraph or directed graph G is a non-empty set of vertices, denoted by V(G), and a collection of ordered pairs of
distinct vertices. Any such pair (#, v) is called an arc or directed line and will usually be denoted uv or u adj v. If uv
and vu are not arcs in G, then we say that  and v are not adjacent. If a = uv is an arc of G, a is said to be incident
out of # and incident into v. The number of arcs incident out of a vertex v is the out-degree of v and the number of
arcs incident into v is its in-degree. A vertex v of G is called a sink, if the in-degree of v is positive and the out-degree
of v is zero. The dual concept of sink is called source. G is said to be symmetric whenever u adj v, v adj u for the
vertices # and v of G.

A walk vgx v - - - x,v,, in a directed graph is an alternating sequence of vertices and arcs, in which each arc x; is
v;—1v;. The length of such a walk is n, the number of occurrences of arcs in it. A closed walk has the same first and
last vertices. A path is a walk in which all vertices are distinct; a cycle or circuit is a closed walk with all vertices
distinct (except the first and last). If there is a path from a vertex u to a vertex v, then v is said to be reachable from u.
A digraph is strongly connected, if every two vertices are mutually reachable. G is said to be totally disconnected, if
no two vertices of G are adjacent. For vertices x and y of G, we define d(x, y) to be the length of any shortest path
from x to y. The diameter diam(G) of a graph G is defined as max{d(u, v) : u, v € V(G)}. We say that two (induced)
subgraphs G| and G, of G are disjoint if G| and G, have no common vertices and no vertex of G (respectively, G»)
is adjacent (in G) to any vertex not in G (respectively, G,). A digraph is a tournament if its underlying graph is a
complete graph i.e. any two vertices of the underlying graph are adjacent. It must be noted that this underlying graph
is simple. Since the non-zero element r is not independent in adjacency of two vertices in total directed graph, so an
underlying graph of the respective directed subgraph may not be simple. Thus for the results of tournament of this
paper, we consider those rings whose underlying graph of corresponding (left) total directed graph is simple.

The coloring of a directed graph is an assignment of colors to the vertices of the graph with no two adjacent vertices
are of same color, i.e. if u adj v for the vertices # and v of a directed graph G, then u and v are of different colors.
A clique of a directed graph is a maximal tournament subgraph. The minimum number of colors needed for proper
coloring of a directed graph G is known as chromatic number of G, and is denoted by x (G).

Next, we remember some definitions from ring-theoretic concepts. An element ¢; of R is called left identity if
e;x = x, for all x € R. The collection of all left identity elements of R is denoted by E;(R). The dual concept of
left identity element is right identity element, and the set of all right identity elements of R is denoted by E,(R). An
identity element of R is an element which is both a left identity element and a right identity element. If a ring has an
identity element (unity), then it is unique. An element x of R is said to be a left inverse of an element y if xy = e,
where e is unity of R. In the same way, right inverse can be defined. An invertible element of R is an element which
has a left and right inverse such that both are equal. An element a € R is said to be left zero-divisor if there exists
a non-zero element b € R such that ab = 0 in R. Right zero-divisors are defined similarly. The collection of left
and right zero-divisors of R are denoted by Z;(R) and Z,(R) respectively. The elements, which are not left and right
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zero-divisors of R, are known as left and right regular elements of R, denoted by Reg;(R) and Reg,(R), respectively.
An element x in R is said to be finite provided Rx (or x R) is a finite set.

Any undefined terminology can be obtained in [8—13].

The left total directed graph 7;(I'(R)) of R is a directed graph with R as vertex set. Any two vertices x and y of
T;(I'(R)), x is adjacent to y (x adj y) if and only if there exists a non-zero left zero-divisor r, which is distinct from
x and y, in Z;(R) with rx + yr € Z;(R). Similarly, for the right total directed graph T,(I'(R)), any two vertices x
and y, x is adjacent to y (x adj y) if and only if there exists a non-zero right zero-divisor r, which is distinct from
x and y, in Z,(R) with rx + yr € Z,(R). Z;(I'(R)) and Reg;(I'(R)) are two induced subgraphs of T;(I'(R)) with
vertex sets Z;(R) and Reg;(R) respectively. In the same sense, Z,(I'(R)) and Reg,(I'(R)) are two induced subgraphs
of 7,.(I'(R)) with vertex sets Z,(R) and Reg,(R) respectively.

One can see the independence of the non-zero zero-divisor r in the following two examples in the respective left
and right adjacency relation.

Example 1. Consider the ring R = {(a;j)2x2 : a1, a12 € Zo, a1 =0 = an} = {Ay, A2, Az, Ay}, where A} = [8 8],
wm = s g

Example 2. Consider the ring R = {0, a, b, ¢} with addition and multiplication operations defined as follows:

)

c

+ 0 b
0 0 b

Q

Q
S|
a

S

and
0 a b ¢
0o 0 0 0 O
a 0 a 0 a
b 0 b 0 b
c 0 ¢ 0 ¢

3. Total directed graph of R

In this section, we mainly discuss some basic properties of left total directed graph 7;(I'(R)) of R and its induced
subgraphs Z;(I'(R)) and Reg;(I'(R)). We interpret the very elementary concepts, left and right, with identity elements,
invertible elements, zero-divisors and regular elements of R. In [14], Wu explored some these types of ring-theoretic
concepts’ correspondence with directed zero-divisor graphs of finite rings. It motivates us to approach the same in our
discussion.

The first result of this section gives the idea of connectedness in total directed graph. We observe that Z;(I'(R)) is
strongly connected for |Z;(R)| > 3.

Theorem 3.1. If |Z;(R)| > 3, then Z;(I'(R)) is strongly connected.

Proof. Suppose x and y are two non-zero elements of Z;(R). Then yx € Z;(R) gives x — 0 — y is a path in
Z;(I'(R)). Similarly xy € Z;(R), so y — 0 — x is a path in Z;(I'(R)). Hence Z;(I'(R)) is strongly connected. [

The above result asserts that diam(Z;(I'(R))) = 2, as the ring R we have considered is non-commutative. In
the same way, if |Z,(R)| > 3, then Z,(I'(R)) is strongly connected. Also diam(Z,(I'(R))) = 2. However, if R is
commutative and Z(R) > 3, then diameters of Z;(I'(R)) and Z,(I'(R)) are 1. Observe that in this case, it is immaterial
whether Z;(R) (Z,(R)) is a left (right) ideal or not.

Next we state a lemma which is a very elementary observation.
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Lemma 3.1. Let f : Ry — R; be a ring monomorphism. If x adj y then f(x)adj f(y), for x,y € R;.

This lemma guides us to the next result in the concept of tournament.
Theorem 3.2. Let f : Ry — R, be a ring monomorphism. If Ti(I'(R))) is a tournament, then so is T;(I'(f(R}))).

Proof. Suppose that 7;(I'(R;)) is a tournament. To show 7;(I'(f(R;))) is also a tournament. For this, we assume
Y1, Y2 € f(Ry). So, y1 = f(x1) and y, = f(x,) for the elements x; and x; in R; respectively. As T;(I'(R))) is
a tournament, therefore either x; adj x, or x, adj x;. Then from the above lemma we get, either y; adj y, or
y2 adj yy. Thus T;(I'(f(R}))) is also a tournament. [

The following lemma provides the inter-relation of ring isomorphism with (left) total directed graph isomorphism
and Theorem 5.2 is proved by using the same.

Lemma 3.2. Let f : Ry — R; be aring isomorphism. Then f is also an isomorphism from T;(I'(R)) onto T;(I'(R»)).

Proof. We need only to show that adjacency relation is preserved. For this, we assume that x adj y, for x, y € R;.
Then there exists a non-zero r in Z;(R;) with rx + yr € Z;(R;). So
(rx +yr)z =0 for some z(#0) € R,
= f(rx +yr)z) = f(0)
= (fOfx)+ fDf@)Nfz) =0.

Since f is an isomorphism, so f(z) # 0. This gives f(r)f(x) + f(y)f(r) € Z;(Ry). Again f(r) # 0. Thus
f(x)adj f(y). Hence the result. [

There are some other interesting elementary observations noticed in this paper. It enables us to differentiate the
very basic concepts left and right. We establish one such result, which relates the left invertible elements of rings with
the respective left adjacency relation of left total directed graph.

Theorem 3.3. Let x, y be two left invertible elements of R. If x adj y then xfl adj yfl, where xfl and yfl are left
inverses of x and y respectively.

Proof. Let x adj y. Then there exists a non-zero r in Z;(R) with rx 4+ yr € Z;(R). So

(rx +yr)z =0 for some z #0
= (yflrx + r)xflxz =0
= (rxl_1 + yl_lr)xz = 0.
Hence xfl adj yfl, asxz #0. O

Moreover, if x, y are two right invertible elements of R, then x! adj y ! whenever x adj y, where x~!and y!
are right inverses of x and y respectively. It is needed to be mentioned here that the ideas of left and right cannot be
mixed up.

The following are two results related with sink and source. In [15], we see these two results in the concept of
zero-divisor graph under group actions in a non-commutative ring by Han.

Theorem 3.4. For the rings R and S, if T;(I'(R)) and T;(I'(S)) have no sources (respectively no sinks), then so has
T;(I'(R x §)) (respectively no sinks).

Proof. Let (r,s) € R x S be arbitrary. Then r € R, s € S. So r and s are not sources of T;(I'(R)) and T;(I'(S))
respectively. Thus there is an element x € R and an element w € S with x adj r and w adj s respectively. If x adj r
then there exists an element u € ZJ(R) such that ux + ru € Z;(R). Again, if w adj s then there exists an element
v € Z/(S) such that vw+sv € Z;(S). From this, we get (u, v) € Z(R x §) with (u, v)(x, w)+(r, s)(u, v) € Z(RxS).
Therefore (x, w) adj (r, s). Hence (r, s) is not a source of T;(I'(R x §)). U
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Corollary 3.1. For the rings R\, Ra, ..., Ry, if each T)(I'(R;)), i = 1,2,3, ..., n has no sources (respectively no
sinks), then so has T)(I'(R; X Ry x --- X Ry)) (respectively no sinks).

Proof. Let (r|,ry,...,r,) € Ry X Ry X -+ X R, be arbitrary. Then r; € R;, Vi € {1, 2, ..., n}. So r; is not a source
of T)(I'(R;)), Vi € {1,2,...,n}. Thus, there is an element x; € R; with x; adj r;, Vi € {1,2,...,n}. Then there
exists an element u; € Z;(R;) such that u;x; +rju; € Z;(R;), Vi € {1,2, ..., n}. From this, we get (u;, us, ..., u,) €
ZI(RixRyx---xRy) with (uy, uz, ..., uy)(x1, X2, ..., Xp)+(r1, 72, oo, 1)U, Uoy ooy y) € Zi(Ry X Ry X+ - - X Ry).
Therefore (x1, x3, ..., x,)adj(ry, r2, ..., r,). Hence (r1, ra, ..., r,) is not a source of T;(I'(Ry X Ry X --- X Ry)). O

Next we observe one more basic result of our discussion.
Theorem 3.5. Let e, e; be right and left identity elements of R respectively and Z['(R) # ¢. Then e, adj e.

Proof. Letr € Z/(R). Then re, = r and ¢;r = r, as e, and ¢; are right and left identity elements of R respectively.
Therefore, re, + e;r = 2r € Z;(R). This gives e, adj ¢;. U

In the same way, if Z*(R) # ¢, then e, adj e;.

4. The case when Z;(R) (Z,(R)) is a left (right) ideal of R

In this section, we consider Z;(R) (Z,(R)) as a left (right) ideal of R.
Theorem 4.1. If |Z;(R)| > 3, then girth(Z,(I'(R))) = 3.

Proof. Since Z;(I'(R)) is strongly connected, so for three non-zero left zero-divisors, we have observed that they are
pair-wise adjacent in either direction. Hence girth(Z;(I'(R))) =3. O
In the same way, if |Z,(R)| > 3, then girth(Z,(I'(R))) = 3.

Theorem 4.2. For any x,y € Reg;(R), x adj y if and only if every element of x + Z;(R) is adjacent to every element
of y + Zi(R).

Proof. Leta=x+r € x+Z/(R),b=y+r, € y+ Z;(R). If x adj y, then there exists a non-zero r in Z;(R)
with rx 4+ yr € Z;(R). This gives r(a —r;) + (b — rp)r € Z;(R) i.e. (ra +br) — (rry +ryr) € Zi(R). As Z;(R) is a
left ideal of R, so ra + br € Z;(R). From this a adj b. Conversely, if a adj b then there exists a non-zero r in Z;(R)
with ra + br € Z;(R). From this r(x + r;) + (y 4+ r2)r € Z;(R). Therefore rx 4+ yr € Z;(R). Hence x adj y. U

In the same way, for any x, y € Reg,(R), xad;y if and only if every element of x + Z,(R) is adjacent to every
element of y + Z,(R).

Theorem 4.3. Let ¢; be a left identity element of R. Then e; + Z;(R) is a symmetric digraph.

Proof. Lete; + 1, e; 4+, be any elements of ¢; + Z;(R), where r1, r, € Z;(R). Then, at least one of ry, r, is non-zero.
From this, we get (e; + ry)adj(e; + r2), (e; + r2)adj(e; + ry). Hence ¢; + Z;(R) is a symmetric digraph. [

Also, if e, is a right identity element, then e, 4+ Z,(R) is a symmetric digraph.

Lemma 4.1. Let |Z;(R)| > 2 and e, be a right identity element. Then, x + e, is adjacent to every element of
y 4+ Regi(R), for x,y € Z;(R).

Proof. If x # 0, then x(x +¢,) + (y + r;))x € Z;(R), and if y # 0, then y(x + ¢,) + (y + 1)y € Z;(R), for any
r; € Reg;(R). Hence the result. [

From the above lemma, it is obvious that every element of x 4+ E,(R) is adjacent to every element of y + Reg;(R).
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Theorem 4.4. Let x € Reg(R) and e, € E,(R). Then every element of e, + Z;(R) is adjacent to every element of
x + Zi(R).

Proof. Let Z/(R) # ¢, x € Reg/(R) and e, € E,(R). Thene, adj x. [
Theorem 4.5. Let Z/(R) # ¢, x € Regi(R) and e, € E.(R). Then e, adj x.

Proof. Let z € Z/(R). Then ze, + xz € Z;(R). Hence e, adj x. [

The above results imply thatif Z/(R) # ¢, then every right identity element is adjacent to every left regular element
of R. In the same way, if Z¥(R) # ¢, then every left identity element is adjacent to every right regular element of
R. Again, we observe that the graphs with E,(R) + Z;(R) and E;(R) + Z,(R) as vertex sets respectively, are two
symmetric digraphs. Every element of E,(R) 4+ Z;(R) is adjacent to every element of Reg;(R) + Z;(R). Similarly,
every element of E;(R) + Z,(R) is adjacent to every element of Reg,(R) + Z,(R).

Theorem 4.6. If |Z;(R)| > 2, then Z;(R) is not disjoint from Reg;(R).

Proof. Let z € Z(R). Then for z'(# z) € Z;(R) and r € Reg(R), we get zz' + rz € Z;(R). Hence Z;(R) is not
disjoint from Reg;(R). U

Corollary 4.1. If |Z;(R)| > 2, then Z;(R) is not disjoint from Reg;(R) + Z;(R).

The dual concept also holds for the immediate preceding theorem and corollary respectively. As a consequence, we
obtain that Reg;(R) and Reg,(R) are not totally disconnected if and only if Reg;(R) + Z;(R) and Reg,(R) + Z,(R)
are not totally disconnected, respectively.

5. Coloring of total directed graphs

In this section, we discuss some results of coloring of (left) total directed graphs. Actually, we develop this coloring
idea of total directed graph with the help of concept of clique. We consider mostly left total directed graph. Exact
results can be obtained for coloring of right total directed graph, whenever necessary. Theorem 4.5 is an interesting
part of our discussion as it directly relates 7;(I'(R)) with T,(I'(R)).

Theorem 5.1. Let R be a reduced ring. Then x(T;(I'(R))) = 1 if and only if R has no non-zero left zero-divisors.

Proof. Suppose x is a non-zero left zero divisor of R. Then there exists a non-zero y in R withxy = 0. If x = y,
then x? = 0. But R is a reduced ring, so x = 0, a contradiction. Also, if x = x + y, then y = 0, again a contradiction.
This gives x is distinct from y and x + y, so xy + (x + y)x € Z;(R). Thus y adj (x + y). But it is a contradiction to
x(T;(I'(R))) = 1. Hence R has no non-zero left zero-divisors. [

Theorem 5.2. Suppose R has no left identity and Z;(R) is a not an ideal of R. If there exists a non-zero element x in
R with x* = 0 and |Rx| = n, then x(T)(I'(R/ Z;(x)))) > n.

Proof. Letrix,rpx € Rx. As x(ryx) + (r2x)x = (xr;)x € Z;(R). So rix adj ryx. From this, we get Rx is a clique.
Now Rx = R/Z;(x). Therefore, T;(I'(Rx)) = T;(I'(R/Z;(x))), by Lemma 3.2. This gives R/Z;(x) is also a clique,
since Rx is a clique. Thus x (7T;(I'(R/Z;(x)))) > n. Hence the result. [

Theorem 5.3. If y;v; = yryi for yi, y;j, Y« € Rand k > j > i, then T;(I'(R)) contains an infinite clique.

Proof. Lety;y; = yy; fory;, yj,« € Randk > j >i.1fz; j = y;i — y;, j > i, then

ZrZiy = Ok — )i — ¥j)
= YkYi — YkYj — W Yi T YrYj
=0.



K.K. Rajkhowa, H.K. Saikia / AKCE International Journal of Graphs and Combinatorics 14 (2017) 261-268 267

Thus 7, € Z/(R) and 50 {234, 23,5, .. .} € Z[(R). Now 234212 + 23,523.4 € Z;(R). This gives {z; 2, 23,5} is a clique.
If z6,7 & {z1,2, 23,5}, then z3 4212 + 26,723,4 € Z;(R) and 289235 + 26,728,9 € Z;(R). From this, {212, 235,267} is @
clique. Proceeding in this way, we get an infinite clique in 7;(1'(R)). Hence the result. [

Theorem 5.4. If I is a finite ideal in R, then T;(I'(R)) contains an infinite clique if and only if TI(F(§)) has an
infinite clique.

Proof. If R has an infinite clique C, the homomorphic image Cof Cisa clique in T;(I (E)) where R = R /1, and
since I is finite, C is still infinite. We assume C is an infinite clique. If x adj y, for x, y € C, then there exists a
non-zero r € Z;(R) distinct from x and y with rx +yr € Z;(R). This gives (r + I)(x + )+ (y + D)(r +1) € Z,(R/]).
Thus (x + ) adj (y + I). Therefore C is a clique. Conversely, let {X;} be a clique in C. Then it is easy to verify that
{x;} is a clique in C. Hence the theorem. [J

Theorem 5.5. Let x be a nilpotent element of degree n > 3 of T;(I'(R)), which does not contain any right identity
element. If every right ideal of R is a left ideal and x"~' & x*R, then there is an infinite clique in T,(I'(R)).

Proof. Let x" = 0,n > 3.If we put y = x2, then y"~! = (x?)"~! = 0. If yR is infinite, thczl T;(I'(R)) has an infinite
clique. Let y R be finite. This gives x R/yR is infinite. Now x R/yR is an infinite clique in R = R/yR. As

F=x"""4yR
YR.

e

and

72 ="'+ yR)" +yR)
= xx"2 4 YR
= yR.

Let 71,72 € xR/yR. Then 77 = rix + yR, 72 = rax + yR. Since

Fr4+mF ="+ yR)(rix +yR) + (nx + yR)x"' + yR)
= (""" + yR)(rix + yR) + r2x" + yR
= ("' + yR)(rix + yR)
e Z,(R/yR).

Therefore, xR = xR/yR is an infinite clique in T,(F(?)) where R = R/yYR. As yR is finite, so T,(I'(R)) has an
infinite clique. Hence the result. [J

Conclusion : In this paper, we have defined total directed graph of non-commutative ring and have discussed some
basic results. We have also investigated some properties of coloring of total directed graphs. In fact, the coloring idea
of this article has been observed from the most motivating paper of graphical aspects of algebraic structures entitled
‘Coloring of commutative rings [16]’, introduced by Istvan Beck in 1988.

References

[1] D.E. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719.

[2] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009)
2224-2228.

[3] A. Abbasi, S. Habibi, On the total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (1) (2012) 85-98.

[4] D.E. Anderson, A. Badawi, The total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (4) (2012) 1250074.

[5] M.H. Shekarriz, M.H.S. Haghighi, H. Sharif, On the total graph of a finite commutative ring, Comm. Algebra 40 (2012) 2798-2807.

[6] A. Abbasi, S. Habibi, The total graph a module over a commutative ring with respect to proper submodules, J. Algebra Appl. 11 (3) (2012)
1250048.

[7] S.E. Atani, S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constant 19 (1) (2011)
23-34.

[8] ML.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, London, 1969.


http://refhub.elsevier.com/S0972-8600(15)30053-0/sb1
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb2
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb2
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb2
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb3
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb4
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb5
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb6
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb6
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb6
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb7
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb7
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb7
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb8

268 K.K. Rajkhowa, H.K. Saikia / AKCE International Journal of Graphs and Combinatorics 14 (2017) 261-268

[9] R. Balkrishnan, K. Ranganathan, A Text Book of Graph Theory, Springer-verlag, New York, Inc., 2008. Reprint.
[10] F. Harary, Graph theory, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1969.
[11] J.A. Huckaba, Commutative Rings with Zero-Divisors, Marcel-Dekker, New York, Basel, 1988.
[12] J. Lambeck, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, Toronto, London, 1966.
[13] I Kaplansky, Commutative Rings, revised Edition, University of Chicago Press, Chicago, 1974.
[14] T. Wu, On directed zero-divisor graphs of finite rings, Discrete Math. 296 (1) (2005) 73-86.
[15] J. Han, The zero-divisor graph under group actions in a non-commutative ring, J. Korean Math. Soc. 45 (2008) 1647-1659.
[16] 1. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.


http://refhub.elsevier.com/S0972-8600(15)30053-0/sb9
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb10
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb11
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb12
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb13
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb14
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb15
http://refhub.elsevier.com/S0972-8600(15)30053-0/sb16

	On total directed graphs of non-commutative rings
	Introduction
	Preliminaries
	Total directed graph of R
	The case when Zl(R) (Zr(R)) is a left (right) ideal of R
	Coloring of total directed graphs
	References


