Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/70
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajkhowa, Kukil Kalpa-
dc.date.accessioned2023-06-27T05:14:08Z-
dc.date.available2023-06-27T05:14:08Z-
dc.date.issued2016-
dc.identifier.issn25889214-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/70-
dc.description.abstractLet R be a commutative ring with unity andM be an R-module. We introduce the total graph of a module M with respect to singular submodule Z(M) of M as an undirected graph T(Γ(M)) with vertex set as M and any two distinct vertices x and y are adjacent if and only if x + y ∈ Z(M). We investigate some properties of the total graph T(Γ(M)) and its induced subgraphs Z(Γ(M)) and Z(Γ(M)). In some aspects, we have noticed some sort of finiteness.en_US
dc.language.isoenen_US
dc.publisherArab Journal of Mathematical Sciencesen_US
dc.subjectMathematicsen_US
dc.subjectCommutative ringen_US
dc.subjectModuleen_US
dc.subjectSingular submoduleen_US
dc.subjectTotal graphen_US
dc.titleTotal graph of a module with respect to singular submoduleen_US
dc.typeArticleen_US
Appears in Collections:Journal Article Publications

Files in This Item:
File Description SizeFormat 
Total_graph_of_a_module_with_respect_to_singular_submodule.pdf247.02 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.